Formalizing Structured Control
Flow Graphs

Amit Sabne, Putt Sakdhangool, and
Rudolf Eigenmann

School of Electrical and Computer Engineering,
Purdue University

LCPC 2016



Structured Programming

Programs written using few constructs
[Zhang’04, Bohm’66, Williams'77]

— Sequence of statements
— If then else blocks
— While/for Loops

— Case statement (?) [Dijkstra’72, Moretti’01]



Why Structured Programming?

e Ease of program readability and maintenance

e “Structured” CFGs, which were assumed to form
from structured programs, are easier to analyze

e Structured CFGs are “composed” of base patterns

Sequence Selection Loop




Why Structured CFGs?

Are never irreducible

— Compilers often don’t optimize irreducible
loops

Analysis is easy (and fast) — all loops are
canonical

Lower the penalty of divergent execution
on SIMD units

Decompilation is easy and always
possible

— Java bytecode with irreducibility cannot be
decompiled (Java does not support gotos)




Issues

e Structured programs can be easily identified

* Not the case for structured CFGs
— Base patterns fail to “decompose” large CFGs

(P
(&) R R
&~ ofcjc i {f} <§j o
o O
 Compiler front-ends can turn structured programs into
“unstructured CFGs”

* Compiler optimizations cause unstructuring: e.g. jump
threading, tail call elimination, short-circuit
optimization etc.



Issues

 Abundant literature refers to structured CFGs, without
defining them

geta of all previous branches, For local, struc-

Kennedy et. al ‘83
tured branches, branch flags simplify out very S

gram, such as loops and conditionals |6, 8, 9]. A structured
control-flow graph 1s a graph that can be decomposed into
subgraphs that represent control structures of a high-level
language, with a single entry point and a single exit point
per subgraph. In most cases, the use of Goto statements

Moretti et. al ‘01

Tse‘87
I 1S sai nst d if ¢ if 1 ains multiple iteration exits multi
A module 1s said to be unstructured if and only if it contains multiple iteration exits and/or multiple

entries. definitions and a basic EEH‘UHE[I‘}’ are given. The methods for

converting branches into block structured control state- Zhang et. al‘04
ments are developed m Section 3. Here, program transfor-

statement. Given a source program with go tn’s,_can we pmi:luce an equiu-élent Ramshaw ’83
target program that renounces go to’s in favor of more structured control con-
structs? The first step in tackling this question is to settle the ground rules: What 6



The linear scan algorithm does not operate on a structured con- Wimmer et. al ‘10
trol flow graph, but on a linear list of blocks. The block order has a

tures. In this section, we show how loaps can be recovered from unstructured

L A ) Kalvala et. al ‘09
graphs, and we define the macro loop which 15 used extensively m our specifi-

Chur concrets coninbutions are: The analyss can directly be
performed on arbibranly strctured and mmutabls contrel- — Kleinsorge et. al ‘13
flow graphs. The computational modal = non-recursive with

10.9 DATA-FLOW ANALYSIS OF STRUCTURED FLOW GRAPHS

Gotoless programs have reducible flow graphs; so do programs encouraged by
several programming methodologies. Several studies of large classes of pro-
grams have revealed that virwally all programs wristen by peopie have flow
graphs that are reducible.'® This observation is relevant for optimization pur-
poses because we can find optimization algorithms that run significantly faster
on reducible flow graphs. In this section we discuss a variety of flow-graph
concepts, such as “‘interval analysis,” that are primarily relevant to structured
flow graphs. In essence, we shall apply the syntax-directed techmiques
developed in Section 10.5 to the more general setting where the syntax doesn’t
necessarily provide the structure, but the tlow graph does.

Aho et. al ‘86

Compilers work on CFGs, and not source codes.
We need formalized way to detect CFG structuredness!



Single-entry-single-exit (SESE) Regions

The region between two nodes (edges) A and °
B is said to be SESE if

— A dominates B, and e
— B post-dominates A, and B
— Every cycle containing A also contains B and

vice versa. D

A single node (edge) is always an SESE region. e

Aren’t SESE — regions between (B—E), (A —F)
Are SESE — regions between (A - G), (C—F)



Formalizations

Maximum in/out degree is 2
Condition node: node with two out-edges

Structured selection condition node : A
condition node N where

— For any path from N to its IPDOM, the region
between the first and last edges is SESE.

— the region between the N and its IPDOM is SESE
and is called selection bodly.

Structured loop condition node : A condition
node N where

— there exists an SESE region between one of its out-
edges and in-edges.

— This SESE region is called the loop bodly.

Unstructured condition node : All other
condition nodes

SESE

SESE

SESE




Formalizations — Base Patterns

* Sequence : Two nodes, A and B, along
with an edge A - B form a sequence if °

— B is the only successor of A, and
— Ais the only predecessor of B e

 Selection : Contains a structured
selection condition node, its IPDOM, 0

and the selection body OR
— The selection body must have at least
one node, and e e e

— any path from the selection condition Q
node to the IPDOM can have at most
one node.

* Loop : Contains a structured loop o
condition node, the loop body, and the OR
entry and exit edges of the loop body
— The loop body can contain at most one G
node.




Formalization — Detecting
Structuredness

* Folding

— conceptual process of
replacing a base structured

pattern with a single node in C_AB D
the CFG.
* |f repeated folding yields O l
single node =2 CFG is (_AB )

structured @@
Cracoeran > 4




Better SIMD Execution

Execution
pattern of
each thread

Time

Code part

of Q

Condltlon in
Q AND Ipred

TO T1

P| P
c_Q

Y

Z | Z

R|R

S S

12




Conclusion and Future Work

e We have formalized the notion of “structured
CFGs” and have presented a mechanism to
detect them

What’s next:

* Current unstructured-to-structured converters
can lead to exponential code blowup

* Desigh a mechanism to avoid it



References

C. Bohm and G. Jacopini, “Flow diagrams, turing machines and languages with only two formation
rules,” Commun. ACM, vol. 9, pp. 366—371, May 1966.

F. Zhang and E. H. D’Hollander, “Using hammock graphs to structure programs,” IEEE Trans. Softw.
Eng., vol. 30, pp. 231-245, Apr. 2004.

Z. Ammarguellat, “A control-flow normalization algorithm and its complexity,” IEEE Trans. Softw.
Eng., vol. 18, pp. 237-251, Mar. 1992.

M. H. Williams and H. L. Ossher, “Conversion of unstructured flow diagrams to structured form,”
Comput. J., vol. 21, no. 2, pp. 161-167, 1978.

G. Oulsnam, “Unravelling unstructured programs,” Comput. J., vol. 25, no. 3, 1982.
O. J. Dahl, E. W. Dijkstra, C. A. R. Hoare,, Structured Programming. UK: Academic Press Ltd. 1972.

H. Wu, G. Diamos, J. Wang, S. Li, and S. Yalamanchili, “Characterization and transformation of
unstructured control flow in bulk synchronous gpu applications,” Int. J. High Perform. Comput. Appl.,
vol. 26, pp. 170-185, May 2012.

J. Anantpur and G. R., “Taming control divergence in gpus through control flow linearization,” in
Compiler Construction (A. Cohen,ed.), 2014.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1986.

M. S. Hecht, Flow Analysis of Computer Programs. New York, NY, Elsevier Science Inc., 1977.



References

L. Carter, J. Ferrante, and C. D. Thomborson, “Folklore confirmed: reducible flow
graphs are exponentially larger,” in POPL 2003

C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, resilient, and
stealthy opaque constructs,” POPL ‘98

B. S. Baker. 1977. An Algorithm for Structuring Flowgraphs. J. ACM 24, 1 (January
1977), 98-120

N. Chapin and S. P. Denniston. “Characteristics of a structured program”. SIGPLAN
Not. 13, 5 (May 1978), 36-45.

E. W. Dijkstra. 1968. Letters to the editor: “Go to statement considered harmful”.
Commun. ACM 11, 3 (March 1968), 147-148.

A. M. Erosa and L. J. Hendren, "Taming control flow: a structured approach to
eliminating goto statements," Computer Languages, Proceedings of the 1994
International Conference on, Toulouse, 1994, pp. 229-240.

D. Knuth. 1979. Structured programming with go to statements. In Classics in
software engineering, Edward Nash Yourdon (Ed.). Yourdon Press, Upper Saddle
River, NJ, USA 257-321.

E. Moretti, G. Chanteperdrix, and A. Osorio. 2001. New Algorithms for Control-
Flow Graph Structuring. In Proceedings of the Fifth European Conference on
Software Maintenance and Reengineering (CSMR '01)

L. Ramshaw. 1988. Eliminating go to's while preserving program structure. J. ACM
35, 4 (October 1988), 893-920.



