
Formalizing Structured Control
Flow Graphs

1

Amit Sabne, Putt Sakdhangool, and

Rudolf Eigenmann

School of Electrical and Computer Engineering,
Purdue University

LCPC 2016

Structured Programming

Programs written using few constructs
[Zhang’04, Bohm’66, Williams’77]

– Sequence of statements

– If then else blocks

– While/for Loops

– Case statement (?) [Dijkstra’72, Moretti’01]

2

Why Structured Programming?
• Ease of program readability and maintenance

• “Structured” CFGs, which were assumed to form
from structured programs, are easier to analyze

• Structured CFGs are “composed” of base patterns

3

B

A

C

D

B

A

D

OR A

B

A
A

B

OR

Sequence Selection Loop

Why Structured CFGs?

• Are never irreducible
– Compilers often don’t optimize irreducible

loops

• Analysis is easy (and fast) – all loops are
canonical

• Lower the penalty of divergent execution
on SIMD units

• Decompilation is easy and always
possible
– Java bytecode with irreducibility cannot be

decompiled (Java does not support gotos)

4

C

B

D

A

E

Issues
• Structured programs can be easily identified
• Not the case for structured CFGs

– Base patterns fail to “decompose” large CFGs

• Compiler front-ends can turn structured programs into

“unstructured CFGs”
• Compiler optimizations cause unstructuring: e.g. jump

threading, tail call elimination, short-circuit
optimization etc.

5

B

A

C

D

E

OR OR

Q

P

R

S

Issues

6

Moretti et. al ‘01

Kennedy et. al ‘83

Tse‘87

Zhang et. al‘04

• Abundant literature refers to structured CFGs, without
defining them

Ramshaw ’83

7

Aho et. al ‘86

Kalvala et. al ‘09

Kleinsorge et. al ‘13

Wimmer et. al ‘10

Compilers work on CFGs, and not source codes.
We need formalized way to detect CFG structuredness!

Single-entry-single-exit (SESE) Regions

The region between two nodes (edges) A and
B is said to be SESE if

– A dominates B, and

– B post-dominates A, and

– Every cycle containing A also contains B and
vice versa.

A single node (edge) is always an SESE region.

Aren’t SESE – regions between (B – E), (A – F)

Are SESE – regions between (A – G), (C – F)

8

A

B

C

D

E

F

G

Formalizations
Maximum in/out degree is 2
Condition node: node with two out-edges

• Structured selection condition node : A

condition node N where
– For any path from N to its IPDOM, the region

between the first and last edges is SESE.
– the region between the N and its IPDOM is SESE

and is called selection body.

• Structured loop condition node : A condition

node N where
– there exists an SESE region between one of its out-

edges and in-edges.
– This SESE region is called the loop body.

• Unstructured condition node : All other

condition nodes

9

N

D

SESE SESE

N

SESE

Formalizations – Base Patterns
• Sequence : Two nodes, A and B, along

with an edge A B form a sequence if
– B is the only successor of A, and
– A is the only predecessor of B

• Selection : Contains a structured
selection condition node, its IPDOM,
and the selection body
– The selection body must have at least

one node, and
– any path from the selection condition

node to the IPDOM can have at most
one node.

• Loop : Contains a structured loop
condition node, the loop body, and the
entry and exit edges of the loop body
– The loop body can contain at most one

node.
10

B

A

C

D

B

A

D

OR

A

B

A
A

B

OR

Formalization – Detecting
Structuredness

• Folding

– conceptual process of
replacing a base structured
pattern with a single node in
the CFG.

• If repeated folding yields
single node CFG is
structured

11

C

B

D

A

E F

G

H

I

CEFG

AB

DH

I

CEFG

AB

DH

I
ABCDEFGHI

Better SIMD Execution

12

Q

P

R

S

T

F

T F

Time

T0 T1

R

R

P
Q

S S

P

Time

R R

P P
c_Q

Y
Z Z

S S

T0 T1
pred = 0;

P

R;
pred = 0;

S

Condition in
Q AND !pred

c_Q pred = 1;

Y

Z

Code part
of Q T F

T

F

Q

R

S

Execution
pattern of

each thread

S

R

P P

Conclusion and Future Work

• We have formalized the notion of “structured
CFGs” and have presented a mechanism to
detect them

What’s next:

• Current unstructured-to-structured converters
can lead to exponential code blowup

• Design a mechanism to avoid it

13

References
• C. Bohm and G. Jacopini, “Flow diagrams, turing machines and languages with only two formation

rules,” Commun. ACM, vol. 9, pp. 366–371, May 1966.

• F. Zhang and E. H. D’Hollander, “Using hammock graphs to structure programs,” IEEE Trans. Softw.
Eng., vol. 30, pp. 231–245, Apr. 2004.

• Z. Ammarguellat, “A control-flow normalization algorithm and its complexity,” IEEE Trans. Softw.
Eng., vol. 18, pp. 237–251, Mar. 1992.

• M. H. Williams and H. L. Ossher, “Conversion of unstructured flow diagrams to structured form,”
Comput. J., vol. 21, no. 2, pp. 161–167, 1978.

• G. Oulsnam, “Unravelling unstructured programs,” Comput. J., vol. 25, no. 3, 1982.

• O. J. Dahl, E. W. Dijkstra, C. A. R. Hoare,, Structured Programming. UK: Academic Press Ltd. 1972.

• H. Wu, G. Diamos, J. Wang, S. Li, and S. Yalamanchili, “Characterization and transformation of
unstructured control flow in bulk synchronous gpu applications,” Int. J. High Perform. Comput. Appl.,
vol. 26, pp. 170–185, May 2012.

• J. Anantpur and G. R., “Taming control divergence in gpus through control flow linearization,” in
Compiler Construction (A. Cohen,ed.), 2014.

• A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1986.

• M. S. Hecht, Flow Analysis of Computer Programs. New York, NY, Elsevier Science Inc., 1977.

14

References
• L. Carter, J. Ferrante, and C. D. Thomborson, “Folklore confirmed: reducible flow

graphs are exponentially larger,” in POPL 2003
• C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, resilient, and

stealthy opaque constructs,” POPL ’98
• B. S. Baker. 1977. An Algorithm for Structuring Flowgraphs. J. ACM 24, 1 (January

1977), 98-120
• N. Chapin and S. P. Denniston. “Characteristics of a structured program”. SIGPLAN

Not. 13, 5 (May 1978), 36-45.
• E. W. Dijkstra. 1968. Letters to the editor: “Go to statement considered harmful”.

Commun. ACM 11, 3 (March 1968), 147-148.
• A. M. Erosa and L. J. Hendren, "Taming control flow: a structured approach to

eliminating goto statements," Computer Languages, Proceedings of the 1994
International Conference on, Toulouse, 1994, pp. 229-240.

• D. Knuth. 1979. Structured programming with go to statements. In Classics in
software engineering, Edward Nash Yourdon (Ed.). Yourdon Press, Upper Saddle
River, NJ, USA 257-321.

• E. Moretti, G. Chanteperdrix, and A. Osorio. 2001. New Algorithms for Control-
Flow Graph Structuring. In Proceedings of the Fifth European Conference on
Software Maintenance and Reengineering (CSMR '01)

• L. Ramshaw. 1988. Eliminating go to's while preserving program structure. J. ACM
35, 4 (October 1988), 893-920.

15

