
+

HYDRA: Extending Shared Address Programming

for Accelerator Clusters

Putt Sakdhnagool, Amit Sabne, Rudolf Eigenmann

Purdue University

+
Programming on Accelerator

Clusters

 Accelerator clusters become a common standard

for supercomputers

 State of the art: MPI + accelerator specific

programming model

 Programming accelerator is hard

 Unique programming model

 Different memory hierarchy

 Multiple level of parallelism

2

+
Shared-Address Programming

Model for Accelerator Clusters

 Shared-address programming model

 Simpler programming model

 Hide program complexity

 Higher Productivity

 Problems for extending to accelerator clusters

 High level of abstraction

 Different accelerator architectures

3

+
Our Approach

 Source-to-source translator that generates

accelerated MPI programs from shared-address

programs

 Two compile-time analyses to extract information

than is necessary for program scalability

 Memory allocation

 Data transfer

 Compiler design to support multiple accelerator

architectures

4

+
OMPD

 Hybrid compiler-runtime translation for
distributed system

 OMPD Compiler

 Work partitioning and distribution

 Partition program into program blocks.

 Each block represents either a serial or parallel loop

 Each block is distributed based on its type

 OMPD Runtime

 Host-to-host message generation

5

OpenMP OMPD

Compiler
Runtime

MPI

+
Array Data Flow Analysis

 Core technique for OMPD and our proposed analyses.

 Analyze the data producer and consumer relationships

between program blocks.

 A set of local uses (LUSE) and local definitions (LDEF) of each

program block defined as

 use represents a read access in the program block

 def represents a write access in the program block

6

LUSE = {usei |1£ i £ n}

LDEF = {def j |1£ j £m}

]:][:]...[:[001111 ublbublbublbuse ppi

defi = [lbp-1 :ubp-1]...[lb1 :ub1][lb0 :ub0]

+
HYDRA: Programming Model

 Directive-based shared address programming

model

 Have only one construct for parallel loops.

#pragma hydra parallel for [clauses]

 4 available clauses

 Syntactically optional

 Might be needed for

program semantic

7

Clauses Format

shared shared(varlist)

private private(varlist)

firstprivate firstprivate(varlist)

reduction reduction(op:varlist)

+
HYDRA: Program Example

8

for (k=0; k<ITER; k++)

{

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) {

for (j=1; j<SIZE+1; j++) {

a[i][j] = (b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i][j+1]) / 4;

}

}

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) {

for (j=1; j<SIZE+1; j++) {

b[i][j] = a[i][j];

}

}

}

+
Data Transfer

 Precise data transfer between host and accelerator

memory is critical

 Excessive transfer overhead can limit scalability

 Simple approach

 Transferring the entire shared data before/after

parallel program block.

9

+

Second step: Determine the transfer range of the shared

data
• Transfer range can be defined by the minimum lower bound

and the maximum upper bound of local read accesses

Data Transfer Analysis

 Two-step algorithm

10

tranferredSection = [min(lbp-1) :max(ubp-1)]...[min(lb1) :max(ub1)][min(lb0) :max(ub0)]

First step: Identify necessary shared data for a program

block
• Use LUSE information to determine a live-in and live-out data.

+
Memory Allocation

 Accelerator memory is limited

 Full data allocation could exceed memory capacity

 Failure of single accelerator execution

 Limit the problem size to accelerator memory

capacity

11

+
Memory Allocation Optimization

 Perform global analysis to summarize all accesses of the
shared data

 Need only 1 allocation and 1 deallocation

 Small sacrifice in the size of memory allocated

 All accesses of a shared data A can be computed using the
equation

 The allocation size can be found using the minimum lower
bound and maximum upper bound of all accesses

 Compiler deals with the misalignment of the newly allocated
and old shared data

12

LUSEA ÈLDEFA

+
HYDRA Translation System

 Consist of a compiler and a runtime system

 Compiler

 Generate accelerated MPI from HYDRA programs

 Support multiple accelerator architectures

13

+
Supporting Multiple Accelerator

Architectures

 Architecture-agnostic internal representation (IR)

 Four common accelerator operations

 Memory allocation

 Data transfer

 Kernel execution

 Memory deallocation

 The compiler design minimizes the number of

architecture specific passes

 Only 1 out of 8 passes are architecture specific

14

+
HYDRA Translation Process

15

Accelerator Extension

Work

Distribution

DEF/USE

Analysis

Kernel

Extractor

Memory

Allocation

Optimization

Memory

Transfer

Analysis

Accelerator

Optimizer

Code Generation

Communication

Generation

HYDRA

Program

MPI+

Accelerator

Program

GPU Code

Generator

MIC Code

Generator

+

 Responsible for remote accelerator
communication

 Host-side runtime system

 Generate communication message

 Execute host-to-host communication

 Accelerator runtime extension

 Map host and accelerator data

 Exchange message between host and accelerator

HYDRA Runtime System
16

Compute NodeCompute Node

ACC CPU CPU ACC

+
Evaluation Setup

GPU Cluster MIC Cluster

Number of

Compute Nodes

264 580

CPU 2x 8-Core Xeon E5-2670

(2.6GHz)

2x 8-Core Xeon E5-2670

(2.6GHz)

Memory 32GB 64GB

Accelerators 3x NVIDIA Tesla M2090

GPUs

2x Xeon Phi P5110

Accelerator

Memory

6GB 8GB (Maximum size per

allocation is 1.88GB)

Interconnection Infiniband FDR Infiniband FDR-10

17

• The evaluation uses up to 64 nodes with one MPI process and one

accelerator per node.

+
Evaluation

 5 common benchmarks

 Bilateral Filter, Blackscholes, Filterbank, Jabobi,

Heat3D

 Scalability

 Strong scaling

 2 problem classes: Class-A and Class-B

 Weak scaling

 Memory allocation

18

+
Strong Scaling

19

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

JACOBI

class-A

class-B

1

2

4

8

16

32

64

1 2 4 8 16 32 64
S

p
e

e
d

u
p

Number of Nodes

HEAT3D

class-A

class-B

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

BLACKSCHOLES

class-A

class-B

GPU

MIC

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

JACOBI

class-A

class-B

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

HEAT3D

class-A

class-B 1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

BLACKSCHOLES

class-A

class-B

+
Strong Scaling

20

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

BILATERAL FILTER

class-A

class-B
1

2

4

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

FILTERBANK

class-A

class-B

GPU

MIC

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p
Number of Nodes

BILATERAL FILTER

class-A

class-B

1

2

4

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

FILTERBANK

class-A

class-B

 Average

speedup: 24.54x

on MIC, 27.56x

on GPU for class-

A problems

+
Memory Allocation: Strong Scaling

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 4 8 16 32 64

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of nodes

Jacobi

Heat3D

Blackscholes

BilateralFilter

Filterbank

21

• The size of allocated accelerator memory reduces as the number of node

increases for all benchmarks

+
Weak Scaling

22

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

S
p

e
e

d
u

p

Number of Nodes

GPU

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

S
p

e
e

d
u

p

Number of nodes

MIC

+
Memory Allocation: Weak Scaling

23

0

4

8

12

16

20

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

JACOBI

0

4

8

12

16

20

24

28

32

36

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

HEAT3D

0
4
8

12
16
20
24
28
32
36
40
44

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

BLACKSCHOLES

0

4

8

12

16

20

24

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

BILATERAL FILTER

+
Memory Allocation: Weak Scaling

24

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r

y
 (

G
B

)

Number of Nodes

FILTERBANK

Per Node Allocation - Node 0

Per Node Allocation - Node N-1

Problem Size

+
Conclusion

 Two architecture-agnostic compile-time
optimizations

 Ensure scalability of the generated program

 HYDRA translation system

 Generate accelerated MPI programs from simple
programming model

 Architecture-agnostic IR

 Evaluate on 64-node GPU and Xeon Phi clusters

 24.54x speed up on the 64-node Xeon Phi cluster

 27.56x speed up on the 64-node GPU cluster

25

+

Thank you

26

