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Programming on Accelerator
Clusters

m Accelerator clusters become a common standard
for supercomputers

m State of the art: MPI + accelerator specific
programming model

m Programming accelerator is hard
m Unique programming model
m Different memory hierarchy

= Multiple level of parallelism




+
Shared-Address Programming
Model for Accelerator Clusters

m Shared-address programming model
= Simpler programming model
m Hide program complexity
= Higher Productivity

m Problems for extending to accelerator clusters
= High level of abstraction
m Different accelerator architectures



+
Our Approach

m Source-to-source translator that generates
accelerated MPI programs from shared-address
programs

m Two compile-time analyses to extract information
than is necessary for program scalability

m Memory allocation
m Data transfer

m Compiler design to support multiple accelerator
architectures



==
OMPD

m Hybrid compiler-runtime translation for

distributed system
— | —
Compiler

m OMPD Compiler

m Work partitioning and distribution

OpenMP

m Partition program into program blocks.
m Each block represents either a serial or parallel loop
m Eachblock is distributed based on its type

m OMPD Runtime
m Host-to-host message generation



+
Array Data Flow Analysis

m Core technique for OMPD and our proposed analyses.

m Analyze the data producer and consumer relationships
between program blocks.

m A set of local uses (LUSE) and local definitions (LDEF) of each
program block defined as

LUSE ={use, |1£i £ n}
LDEF ={def, |1£ jEm}
m use represents a read access in the program block
use, =[Ib, , :ub, ,]...[lb, : ub,][lb : ub,]

m defrepresents a write access in the program block

def,=[b, ,:ub 1...[Ib, :ub,][Ib, : ub,]



==
HYDRA: Programming Model

m Directive-based shared address programming
model

m Have only one construct for parallel loops.

fpragma hydra parallel for [clauses]

= 4 available clauses

B Syntactically Optional shared shared (varlist)
= Might be needed for P7*V2*¢ private (varlist)
program semantic firstprivate firstprivate (varlist)

reduction reduction (op:varlist)



==
HYDRA: Program Example

for (k=0; k<ITER; k++)
{
#pragma hydra parallel for private(i,j)
for (i=1;i<SIZE+1;i++) {
for (j=1;j<SIZE+1; j++) {
a[i]i] = (b[i-1][] + b[i+1][] + b[i[-1] + bLi[+11) / 4;
}
}

#pragma hydra parallel for private(i,j)
for (1=1;1<SIZE+1;i++) {
for (j=1;j<SIZE+1;j++) {
b[i][] = a[i][];
}
}
}



Data Transfer

m Precise data transfer between host and accelerator
memory is critical

m Excessive transfer overhead can limit scalability

m Simple approach

m Transferring the entire shared data before/after
parallel program block.



Data Transfer Analysis

m Two-step algorithm

First step: Identify necessary shared data for a program
block

e Use LUSE information to determine a live-in and live-out data.

Second step: Determine the transfer range of the shared

data

* Transfer range can be defined by the minimum lower bound
and the maximum upper bound of local read accesses

tranferredSection =[mi n(lbp_ - max(ubp_ Dl--[min(/b,) : max(ub,)][min(lb,) : max(ub,)]
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Memory Allocation

m Accelerator memory is limited

m Full data allocation could exceed memory capacity
m Failure of single accelerator execution

m Limit the problem size to accelerator memory
capacity



+
Memory Allocation Optimization

m Perform global analysis to summarize all accesses of the
shared data

m Need only 1 allocation and 1 deallocation
m Small sacrifice in the size of memory allocated

m All accesses of a shared data A can be computed using the
equation

LUSE*E LDEF"

m The allocation size can be found using the minimum lower
bound and maximum upper bound of all accesses

m Compiler deals with the misalignment of the newly allocated
and old shared data



HYDRA Translation System

m Consist of a compiler and a runtime system

m Compiler
m Generate accelerated MPI from HYDRA programs
m Support multiple accelerator architectures



Supporting Multiple Accelerator
Architectures

m Architecture-agnostic internal representation (IR)

m Four common accelerator operations
= Memory allocation
m Data transfer
m Kernel execution
® Memory deallocation

m The compiler design minimizes the number of
architecture specific passes

m Only 1 out of 8 passes are architecture specific
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HYDRA Translation Process

Accelerator Extension
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HYDRA Runtime System

m Responsible for remote accelerator
communication

Compute Node Compute Node

m Host-side runtime system
m Generate communication message
m Execute host-to-host communication

m Accelerator runtime extension
m Map host and accelerator data
m Exchange message between host and accelerator



== 17
Evaluation Setup

Number of 264 580
Compute Nodes
CPU 2x 8-Core Xeon E5-2670 2x 8-Core Xeon E5-2670
(2.6GHz) (2.6GHz)
Memory 32GB 64GB
Accelerators 3x NVIDIA Tesla M2090 2x Xeon Phi P5110
GPUs
Accelerator 6GB 8GB (Maximum size per
Memory allocation is 1.88GB)
Interconnection Infiniband FDR Infiniband FDR-10

* The evaluation uses up to 64 nodes with one MPI process and one
accelerator per node.



+ .
Evaluation

m 5 common benchmarks

m Bilateral Filter, Blackscholes, Filterbank, Jabobi,
Heat3D

m Scalability
= Strong scaling
m 2 problem classes: Class-A and Class-B
m Weak scaling

m Memory allocation
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Strong Scaling
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Strong Scaling
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m Average

speedup:24.54x
on MIC, 27.56x
on GPU for class-
A problems
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Memory Allocation: Strong Scaling

10.00
a 9.00 |
O 8.00 ——Jacobi
P 7.00 —s—Heat3D
g 6.00 ——Blackscholes
é 5.00 —< BilateralFilter
o 4.00 Filterbank
Q
s 3.00
o
8 2.00 ;
< 1.00 \M.
0.00

1 2 4 8 16 32 64
Number of nodes

* The size of allocated accelerator memory reduces as the number of node
increases for all benchmarks
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Weak Scaling
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Memory Allocation: Weak Scaling
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Memory Allocation: Weak Scaling
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+ .
Conclusion

m Two architecture-agnostic compile-time
optimizations
= Ensure scalability of the generated program

m HYDRA translation system

m Generate accelerated MPI programs from simple
programming model

m Architecture-agnostic IR

m Evaluate on 64-node GPU and Xeon Phi clusters
m 24.54x speed up on the 64-node Xeon Phi cluster
m 27.56x speed up on the 64-node GPU cluster
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