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Programming on Accelerator 

Clusters

 Accelerator clusters become a common standard 

for supercomputers

 State of the art: MPI + accelerator specific 

programming model

 Programming accelerator is hard

 Unique programming model

 Different memory hierarchy 

 Multiple level of parallelism
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Shared-Address Programming 

Model for Accelerator Clusters

 Shared-address programming model

 Simpler programming model

 Hide program complexity

 Higher Productivity

 Problems for extending to accelerator clusters

 High level of abstraction

 Different accelerator architectures
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Our Approach

 Source-to-source translator that generates 

accelerated MPI programs from shared-address 

programs

 Two compile-time analyses to extract information 

than is necessary for program scalability

 Memory allocation

 Data transfer

 Compiler design to support multiple accelerator 

architectures
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OMPD

 Hybrid compiler-runtime translation for 
distributed system

 OMPD Compiler

 Work partitioning and distribution

 Partition program into program blocks. 

 Each block represents either a serial or parallel loop

 Each block is distributed based on its type

 OMPD Runtime

 Host-to-host message generation 
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Array Data Flow Analysis

 Core technique for OMPD and our proposed analyses. 

 Analyze the data producer and consumer relationships 

between program blocks. 

 A set of local uses (LUSE) and local definitions (LDEF) of each 

program block defined as 

 use represents a read access in the program block 

 def represents a write access in the program block 
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LUSE = {usei |1£ i £ n}

LDEF = {def j |1£ j £m}

]:][:]...[:[ 001111 ublbublbublbuse ppi 

defi = [lbp-1 :ubp-1]...[lb1 :ub1][lb0 :ub0 ]



+
HYDRA: Programming Model

 Directive-based shared address programming 

model

 Have only one construct for parallel loops.  

#pragma hydra parallel for [clauses]

 4 available clauses

 Syntactically optional

 Might be needed for

program semantic
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Clauses Format

shared shared(varlist)

private private(varlist)

firstprivate firstprivate(varlist)

reduction reduction(op:varlist)
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HYDRA: Program Example
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for (k=0; k<ITER; k++) 

{

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) { 

for (j=1; j<SIZE+1; j++) {

a[i][j] = (b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i][j+1]) / 4;

}

}

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) { 

for (j=1; j<SIZE+1; j++) {

b[i][j] = a[i][j];

}

}

}
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Data Transfer

 Precise data transfer between host and accelerator 

memory is critical

 Excessive transfer overhead can limit scalability

 Simple approach

 Transferring the entire shared data before/after 

parallel program block. 
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Second step: Determine the transfer range of the shared 

data
• Transfer range can be defined by the minimum lower bound 

and the maximum upper bound of local read accesses 

Data Transfer Analysis

 Two-step algorithm

10

tranferredSection = [min(lbp-1) :max(ubp-1)]...[min(lb1) :max(ub1)][min(lb0 ) :max(ub0)]

First step: Identify necessary shared data for a program 

block
• Use LUSE information to determine a live-in and live-out data. 
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Memory Allocation

 Accelerator memory is limited

 Full data allocation could exceed memory capacity

 Failure of single accelerator execution

 Limit the problem size to accelerator memory 

capacity
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Memory Allocation Optimization

 Perform global analysis to summarize all accesses of the 
shared data

 Need only 1 allocation and 1 deallocation

 Small sacrifice in the size of memory allocated

 All accesses of a shared data A can be computed using the 
equation

 The allocation size can be found using the minimum lower 
bound and maximum upper bound of all accesses

 Compiler deals with the misalignment of the newly allocated 
and old shared data 
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LUSEA ÈLDEFA
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HYDRA Translation System

 Consist of a compiler and a runtime system

 Compiler

 Generate accelerated MPI from HYDRA programs

 Support multiple accelerator architectures
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Supporting Multiple Accelerator 

Architectures

 Architecture-agnostic internal representation (IR)

 Four common accelerator operations

 Memory allocation

 Data transfer

 Kernel execution

 Memory deallocation

 The compiler design minimizes the number of 

architecture specific passes

 Only 1 out of 8 passes are architecture specific
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HYDRA Translation Process 
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 Responsible for remote accelerator 
communication

 Host-side runtime system 

 Generate communication message

 Execute host-to-host communication

 Accelerator runtime extension

 Map host and accelerator data

 Exchange message between host and accelerator

HYDRA Runtime System
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Evaluation Setup

GPU Cluster MIC Cluster

Number of 

Compute Nodes

264 580

CPU 2x 8-Core Xeon E5-2670 

(2.6GHz)

2x 8-Core Xeon E5-2670 

(2.6GHz)

Memory 32GB 64GB

Accelerators 3x NVIDIA Tesla M2090 

GPUs 

2x Xeon Phi P5110

Accelerator 

Memory

6GB 8GB (Maximum size per 

allocation is 1.88GB)

Interconnection Infiniband FDR Infiniband FDR-10
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• The evaluation uses up to 64 nodes with one MPI process and one 

accelerator per node. 
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Evaluation

 5 common benchmarks

 Bilateral Filter, Blackscholes, Filterbank, Jabobi, 

Heat3D

 Scalability

 Strong scaling

 2 problem classes: Class-A and Class-B

 Weak scaling

 Memory allocation
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Strong Scaling
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Strong Scaling
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Memory Allocation: Strong Scaling
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• The size of allocated accelerator memory reduces as the number of node 

increases for all benchmarks 
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Weak Scaling
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Memory Allocation: Weak Scaling
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Memory Allocation: Weak Scaling
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Conclusion

 Two architecture-agnostic compile-time 
optimizations

 Ensure scalability of the generated program

 HYDRA translation system 

 Generate accelerated MPI programs from simple 
programming model

 Architecture-agnostic IR

 Evaluate on 64-node GPU and Xeon Phi clusters

 24.54x speed up on the 64-node Xeon Phi cluster

 27.56x speed up on the 64-node GPU cluster
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Thank you
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