
+

HYDRA: Extending Shared Address Programming

for Accelerator Clusters

Putt Sakdhnagool, Amit Sabne, Rudolf Eigenmann

Purdue University

+
Programming on Accelerator

Clusters

 Accelerator clusters become a common standard

for supercomputers

 State of the art: MPI + accelerator specific

programming model

 Programming accelerator is hard

 Unique programming model

 Different memory hierarchy

 Multiple level of parallelism

2

+
Shared-Address Programming

Model for Accelerator Clusters

 Shared-address programming model

 Simpler programming model

 Hide program complexity

 Higher Productivity

 Problems for extending to accelerator clusters

 High level of abstraction

 Different accelerator architectures

3

+
Our Approach

 Source-to-source translator that generates

accelerated MPI programs from shared-address

programs

 Two compile-time analyses to extract information

than is necessary for program scalability

 Memory allocation

 Data transfer

 Compiler design to support multiple accelerator

architectures

4

+
OMPD

 Hybrid compiler-runtime translation for
distributed system

 OMPD Compiler

 Work partitioning and distribution

 Partition program into program blocks.

 Each block represents either a serial or parallel loop

 Each block is distributed based on its type

 OMPD Runtime

 Host-to-host message generation

5

OpenMP OMPD

Compiler
Runtime

MPI

+
Array Data Flow Analysis

 Core technique for OMPD and our proposed analyses.

 Analyze the data producer and consumer relationships

between program blocks.

 A set of local uses (LUSE) and local definitions (LDEF) of each

program block defined as

 use represents a read access in the program block

 def represents a write access in the program block

6

LUSE = {usei |1£ i £ n}

LDEF = {def j |1£ j £m}

]:][:]...[:[001111 ublbublbublbuse ppi 

defi = [lbp-1 :ubp-1]...[lb1 :ub1][lb0 :ub0]

+
HYDRA: Programming Model

 Directive-based shared address programming

model

 Have only one construct for parallel loops.

#pragma hydra parallel for [clauses]

 4 available clauses

 Syntactically optional

 Might be needed for

program semantic

7

Clauses Format

shared shared(varlist)

private private(varlist)

firstprivate firstprivate(varlist)

reduction reduction(op:varlist)

+
HYDRA: Program Example

8

for (k=0; k<ITER; k++)

{

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) {

for (j=1; j<SIZE+1; j++) {

a[i][j] = (b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i][j+1]) / 4;

}

}

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) {

for (j=1; j<SIZE+1; j++) {

b[i][j] = a[i][j];

}

}

}

+
Data Transfer

 Precise data transfer between host and accelerator

memory is critical

 Excessive transfer overhead can limit scalability

 Simple approach

 Transferring the entire shared data before/after

parallel program block.

9

+

Second step: Determine the transfer range of the shared

data
• Transfer range can be defined by the minimum lower bound

and the maximum upper bound of local read accesses

Data Transfer Analysis

 Two-step algorithm

10

tranferredSection = [min(lbp-1) :max(ubp-1)]...[min(lb1) :max(ub1)][min(lb0) :max(ub0)]

First step: Identify necessary shared data for a program

block
• Use LUSE information to determine a live-in and live-out data.

+
Memory Allocation

 Accelerator memory is limited

 Full data allocation could exceed memory capacity

 Failure of single accelerator execution

 Limit the problem size to accelerator memory

capacity

11

+
Memory Allocation Optimization

 Perform global analysis to summarize all accesses of the
shared data

 Need only 1 allocation and 1 deallocation

 Small sacrifice in the size of memory allocated

 All accesses of a shared data A can be computed using the
equation

 The allocation size can be found using the minimum lower
bound and maximum upper bound of all accesses

 Compiler deals with the misalignment of the newly allocated
and old shared data

12

LUSEA ÈLDEFA

+
HYDRA Translation System

 Consist of a compiler and a runtime system

 Compiler

 Generate accelerated MPI from HYDRA programs

 Support multiple accelerator architectures

13

+
Supporting Multiple Accelerator

Architectures

 Architecture-agnostic internal representation (IR)

 Four common accelerator operations

 Memory allocation

 Data transfer

 Kernel execution

 Memory deallocation

 The compiler design minimizes the number of

architecture specific passes

 Only 1 out of 8 passes are architecture specific

14

+
HYDRA Translation Process

15

Accelerator Extension

Work

Distribution

DEF/USE

Analysis

Kernel

Extractor

Memory

Allocation

Optimization

Memory

Transfer

Analysis

Accelerator

Optimizer

Code Generation

Communication

Generation

HYDRA

Program

MPI+

Accelerator

Program

GPU Code

Generator

MIC Code

Generator

+

 Responsible for remote accelerator
communication

 Host-side runtime system

 Generate communication message

 Execute host-to-host communication

 Accelerator runtime extension

 Map host and accelerator data

 Exchange message between host and accelerator

HYDRA Runtime System
16

Compute NodeCompute Node

ACC CPU CPU ACC

+
Evaluation Setup

GPU Cluster MIC Cluster

Number of

Compute Nodes

264 580

CPU 2x 8-Core Xeon E5-2670

(2.6GHz)

2x 8-Core Xeon E5-2670

(2.6GHz)

Memory 32GB 64GB

Accelerators 3x NVIDIA Tesla M2090

GPUs

2x Xeon Phi P5110

Accelerator

Memory

6GB 8GB (Maximum size per

allocation is 1.88GB)

Interconnection Infiniband FDR Infiniband FDR-10

17

• The evaluation uses up to 64 nodes with one MPI process and one

accelerator per node.

+
Evaluation

 5 common benchmarks

 Bilateral Filter, Blackscholes, Filterbank, Jabobi,

Heat3D

 Scalability

 Strong scaling

 2 problem classes: Class-A and Class-B

 Weak scaling

 Memory allocation

18

+
Strong Scaling

19

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

JACOBI

class-A

class-B

1

2

4

8

16

32

64

1 2 4 8 16 32 64
S

p
e

e
d

u
p

Number of Nodes

HEAT3D

class-A

class-B

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

BLACKSCHOLES

class-A

class-B

GPU

MIC

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

JACOBI

class-A

class-B

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

HEAT3D

class-A

class-B 1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

BLACKSCHOLES

class-A

class-B

+
Strong Scaling

20

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

BILATERAL FILTER

class-A

class-B
1

2

4

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

FILTERBANK

class-A

class-B

GPU

MIC

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

e
e

d
u

p
Number of Nodes

BILATERAL FILTER

class-A

class-B

1

2

4

1 2 4 8 16 32 64

S
p

e
e

d
u

p

Number of Nodes

FILTERBANK

class-A

class-B

 Average

speedup: 24.54x

on MIC, 27.56x

on GPU for class-

A problems

+
Memory Allocation: Strong Scaling

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 4 8 16 32 64

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of nodes

Jacobi

Heat3D

Blackscholes

BilateralFilter

Filterbank

21

• The size of allocated accelerator memory reduces as the number of node

increases for all benchmarks

+
Weak Scaling

22

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

S
p

e
e

d
u

p

Number of Nodes

GPU

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

S
p

e
e

d
u

p

Number of nodes

MIC

+
Memory Allocation: Weak Scaling

23

0

4

8

12

16

20

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

JACOBI

0

4

8

12

16

20

24

28

32

36

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

HEAT3D

0
4
8

12
16
20
24
28
32
36
40
44

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

BLACKSCHOLES

0

4

8

12

16

20

24

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r
y

 (
G

B
)

Number of Nodes

BILATERAL FILTER

+
Memory Allocation: Weak Scaling

24

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

A
ll

o
c

a
te

d
 M

e
m

o
r

y
 (

G
B

)

Number of Nodes

FILTERBANK

Per Node Allocation - Node 0

Per Node Allocation - Node N-1

Problem Size

+
Conclusion

 Two architecture-agnostic compile-time
optimizations

 Ensure scalability of the generated program

 HYDRA translation system

 Generate accelerated MPI programs from simple
programming model

 Architecture-agnostic IR

 Evaluate on 64-node GPU and Xeon Phi clusters

 24.54x speed up on the 64-node Xeon Phi cluster

 27.56x speed up on the 64-node GPU cluster

25

+

Thank you

26

