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Programming on Accelerator 

Clusters

 Accelerator clusters become a common standard 

for supercomputers

 State of the art: MPI + accelerator specific 

programming model

 Programming accelerator is hard

 Unique programming model

 Different memory hierarchy 

 Multiple level of parallelism
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Shared-Address Programming 

Model for Accelerator Clusters

 Shared-address programming model

 Simpler programming model

 Hide program complexity

 Higher Productivity

 Problems for extending to accelerator clusters

 High level of abstraction

 Different accelerator architectures
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Our Approach

 Source-to-source translator that generates 

accelerated MPI programs from shared-address 

programs

 Two compile-time analyses to extract information 

than is necessary for program scalability

 Memory allocation

 Data transfer

 Compiler design to support multiple accelerator 

architectures
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OMPD

 Hybrid compiler-runtime translation for 
distributed system

 OMPD Compiler

 Work partitioning and distribution

 Partition program into program blocks. 

 Each block represents either a serial or parallel loop

 Each block is distributed based on its type

 OMPD Runtime

 Host-to-host message generation 
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Array Data Flow Analysis

 Core technique for OMPD and our proposed analyses. 

 Analyze the data producer and consumer relationships 

between program blocks. 

 A set of local uses (LUSE) and local definitions (LDEF) of each 

program block defined as 

 use represents a read access in the program block 

 def represents a write access in the program block 
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LUSE = {usei |1£ i £ n}

LDEF = {def j |1£ j £m}

]:][:]...[:[ 001111 ublbublbublbuse ppi 

defi = [lbp-1 :ubp-1]...[lb1 :ub1][lb0 :ub0 ]



+
HYDRA: Programming Model

 Directive-based shared address programming 

model

 Have only one construct for parallel loops.  

#pragma hydra parallel for [clauses]

 4 available clauses

 Syntactically optional

 Might be needed for

program semantic
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Clauses Format

shared shared(varlist)

private private(varlist)

firstprivate firstprivate(varlist)

reduction reduction(op:varlist)
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HYDRA: Program Example
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for (k=0; k<ITER; k++) 

{

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) { 

for (j=1; j<SIZE+1; j++) {

a[i][j] = (b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i][j+1]) / 4;

}

}

#pragma hydra parallel for private(i,j)

for (i=1; i<SIZE+1; i++) { 

for (j=1; j<SIZE+1; j++) {

b[i][j] = a[i][j];

}

}

}
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Data Transfer

 Precise data transfer between host and accelerator 

memory is critical

 Excessive transfer overhead can limit scalability

 Simple approach

 Transferring the entire shared data before/after 

parallel program block. 
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Second step: Determine the transfer range of the shared 

data
• Transfer range can be defined by the minimum lower bound 

and the maximum upper bound of local read accesses 

Data Transfer Analysis

 Two-step algorithm

10

tranferredSection = [min(lbp-1) :max(ubp-1)]...[min(lb1) :max(ub1)][min(lb0 ) :max(ub0)]

First step: Identify necessary shared data for a program 

block
• Use LUSE information to determine a live-in and live-out data. 
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Memory Allocation

 Accelerator memory is limited

 Full data allocation could exceed memory capacity

 Failure of single accelerator execution

 Limit the problem size to accelerator memory 

capacity
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Memory Allocation Optimization

 Perform global analysis to summarize all accesses of the 
shared data

 Need only 1 allocation and 1 deallocation

 Small sacrifice in the size of memory allocated

 All accesses of a shared data A can be computed using the 
equation

 The allocation size can be found using the minimum lower 
bound and maximum upper bound of all accesses

 Compiler deals with the misalignment of the newly allocated 
and old shared data 
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LUSEA ÈLDEFA



+
HYDRA Translation System

 Consist of a compiler and a runtime system

 Compiler

 Generate accelerated MPI from HYDRA programs

 Support multiple accelerator architectures
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Supporting Multiple Accelerator 

Architectures

 Architecture-agnostic internal representation (IR)

 Four common accelerator operations

 Memory allocation

 Data transfer

 Kernel execution

 Memory deallocation

 The compiler design minimizes the number of 

architecture specific passes

 Only 1 out of 8 passes are architecture specific
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HYDRA Translation Process 
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 Responsible for remote accelerator 
communication

 Host-side runtime system 

 Generate communication message

 Execute host-to-host communication

 Accelerator runtime extension

 Map host and accelerator data

 Exchange message between host and accelerator

HYDRA Runtime System
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Evaluation Setup

GPU Cluster MIC Cluster

Number of 

Compute Nodes

264 580

CPU 2x 8-Core Xeon E5-2670 

(2.6GHz)

2x 8-Core Xeon E5-2670 

(2.6GHz)

Memory 32GB 64GB

Accelerators 3x NVIDIA Tesla M2090 

GPUs 

2x Xeon Phi P5110

Accelerator 

Memory

6GB 8GB (Maximum size per 

allocation is 1.88GB)

Interconnection Infiniband FDR Infiniband FDR-10
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• The evaluation uses up to 64 nodes with one MPI process and one 

accelerator per node. 
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Evaluation

 5 common benchmarks

 Bilateral Filter, Blackscholes, Filterbank, Jabobi, 

Heat3D

 Scalability

 Strong scaling

 2 problem classes: Class-A and Class-B

 Weak scaling

 Memory allocation
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Strong Scaling
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Strong Scaling
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Memory Allocation: Strong Scaling
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• The size of allocated accelerator memory reduces as the number of node 

increases for all benchmarks 
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Weak Scaling
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Memory Allocation: Weak Scaling
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Memory Allocation: Weak Scaling
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Conclusion

 Two architecture-agnostic compile-time 
optimizations

 Ensure scalability of the generated program

 HYDRA translation system 

 Generate accelerated MPI programs from simple 
programming model

 Architecture-agnostic IR

 Evaluate on 64-node GPU and Xeon Phi clusters

 24.54x speed up on the 64-node Xeon Phi cluster

 27.56x speed up on the 64-node GPU cluster
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Thank you
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