
Evaluating Performance Portability of OpenACC

Amit Sabne1, Putt Sakdhnagool1, Seyong Lee2, and Jeffrey S. Vetter2,3

1 Purdue University, West Lafayette IN 47907, USA
2 Oak Ridge National Laboratory
3 Georgia Institute of Technology

{asabne, psakdhna}@purdue.edu, {lees2, vetter}@ornl.gov

Abstract. Accelerator-based heterogeneous computing is gaining mo-
mentum in High Performance Computing arena. However, the increased
complexity of the accelerator architectures demands more generic, high-
level programming models. OpenACC is one such attempt to tackle the
problem. While the abstraction endowed by OpenACC offers productiv-
ity, it raises questions on its portability. This paper evaluates the perfor-
mance portability obtained by OpenACC on twelve OpenACC programs
on NVIDIA CUDA, AMD GCN, and Intel MIC architectures. We study
the effects of various compiler optimizations and OpenACC program
settings on these architectures to provide insights into the achieved per-
formance portability.

Keywords : OpenACC, Performance Portability, High Performance Com-
puting

1 Introduction

Recent years have seen a growing trend in the adoption of heterogeneous com-
puting across many areas including mobile and high performance computing
(HPC) [15]. Presently, NVIDIA CUDA GPUs, AMD GPUs, and Intel Xeon Phi
are the prominent heterogeneous architectures. While all of these devices possess
tremendous computational power, they have significant differences in their archi-
tectures as compared to traditional, latency-optimized CPUs. Furthermore, even
within architectural families (e.g., CUDA GPUs), new generations of each ar-
chitecture often differ significantly from their predecessor. Indeed, these devices
are being more tightly-integrated into node architectures, eliminating limita-
tions like the high-latency PCIe bus, and frequently changing the device mem-
ory model [14], adding on-chip programmer-managed caches, and having a lower
number of core registers.

So far, many device-specific programming models and optimization strategies
have been developed to exploit these architectures: CUDA [10] for NVIDIA
GPUs, and Intel Language Extensions for Offload (LEO) [1] for Xeon Phi are two
such architecture-specific programming models. However, despite the availability
of these relatively high-level programming models, programming heterogeneous
systems requires considerable expertise and architectural knowledge to obtain
high performance.

2

Ultimately, the goal of any programming system is to maintain a reasonable
level of performance portability, where, ideally, programmers can write their ap-
plication once, and execute it efficiently on any architecture without manual
intervention. Unfortunately, current solutions like CUDA and LEO are not even
functionally portable across devices. So, programmers are forced to have multiple
versions of the code for each device that they must maintain and validate, which
is tedious, error prone, and generally unproductive. The first programming model
to allow such functional portability was OpenCL [12]. However, due to the low-
level nature of this model, programming in OpenCL was tedious. OpenACC [11]
was therefore proposed to address two major issues: i) allow functional portabil-
ity across various heterogeneous architectures, and ii) ease the process of porting
a serial or OpenMP application to individual heterogeneous devices.

OpenACC provides a set of directives, or pragmas that allow programmers
to port an existing serial/OpenMP (C or FORTRAN) application to a heteroge-
neous system. The programmer must determine the compute intensive, parallel
regions in the application, and insert the OpenACC directives on these regions.
The underlying compiler framework is then responsible for generating executable
instructions for the target devices, while the runtime system is responsible for
coordinating code execution and data movement among the multiple devices in
the node. OpenACC offers the benefit that programmers can incrementally of-
fload and control computation with these directives. Still, even with this level
of abstraction in OpenACC, the compiler and runtime system must make many
accurate decisions to ensure that the generated code executes with performance
comparable to an expert’s manually written version of the application.

Beyond the functional portability, performance portability is vital to the suc-
cess of any programming system because code optimizations for specific archi-
tectural features can be evasive. While many researchers have provided systems
to offload an application written in a high-level language with programmer an-
notations onto a specific heterogeneous architecture [13, 5, 7], we are unaware of
any studies on understanding the performance portability aspects of a high-level
programming model across heterogeneous architectures, like GPUs and Xeon
Phis. We believe that this question is of high importance, since an optimiza-
tion that yields significant benefits on one architecture may be inconsequential
on another architecture. The understanding of performance impacts of various
optimizations is crucial to an OpenACC programmer.

In this paper, we study the performance portability of several OpenACC
applications across different heterogeneous devices. Due to the architectural dif-
ferences across current heterogeneous architectures, a tuned OpenACC applica-
tion that runs efficiently on one architecture may not run efficiently on other
architectures. Since performance is an outcome of the OpenACC program set-
tings and compiler optimizations, it becomes necessary to understand how each
program setting and optimization performs on each target architecture, in order
to reason about performance portability. To this end, we use various optimiza-
tions instrumented in our OpenARC [9] compiler to measure these trade-offs
empirically. Then, using OpenARC’s auto-tuning system, we obtain the best

3

performing application configuration on each architecture. Next, to evaluate the
OpenACC performance portability, we perform a cross-comparison experiment
using the best performing application configuration for application/architecture
pair against the other architectures. In the process, we highlight the effects of
important program settings and compiler optimizations on each architecture,
which, in turn, provide insights on realized performance.

To summarize, we make the following contributions:

– We evaluate the performance portability of the OpenACC programming
model across NVIDIA GPUs, AMD GPUs, and Intel Xeon Phi coprocessor
architectures on 12 OpenACC applications in an effort to understand the
effects of various OpenACC program settings and compiler optimizations.

– From this evidence, we highlight the role of specific optimizations for indi-
vidual architectural features, and provide a performance portability matrix
showing the potential benefits (or costs) of highly-optimized applications.

The remainder of this paper is organized as follows: Section 2 gives a brief
introduction to the target architectures and OpenACC programming model.
Section 3 describes the OpenARC compiler framework. Section 4 evaluates per-
formance portability of OpenACC. We conclude our work and present our future
plan in section 5.

2 Background

2.1 Target Architectures

We now briefly describe the architectural details of NVIDIA’s Kepler GPUs,
AMD’s Graphics Core Next (GCN) GPUs and Intel Xeon Phi (MIC) Copro-
cessors. The high-performing cards of all these architectures come with their
own device memories. Since their primary focus is on achieving massive par-
allelism, they resort to simpler in-order cores. On Kepler, the individual cores
are distributed across Streaming Multiprocessors. GCN distributes them across
Compute Units. Being evolved as GPUs, Kepler and GCN provide texture mem-
ories that can be used for caching read-only data. Kepler and GCN rely upon
the underlying runtime to perform SIMD operations. On the other hand, be-
ing evolved from CPU cores, the wider SIMD units on MIC enable it to obtain
its peak performance. The compiler has to perform vectorization to make use
of the SIMD units on MIC, unless SIMD intrinsics are explicitly inserted by
programmers. SIMD width on GCN and MIC is 16, while on CUDA, it is 32
(warp size). MIC distributes parallelism across cores; each core runs four hard-
ware threads. Despite being a coprocessor, MIC runs an Operating System that
handles the thread scheduling. Table 1 provides further comparative details of
these architectures.

2.2 OpenACC Programming Model

The OpenACC [11] programming model provides a high-level, functionally portable
programming approach for accelerators. It requires the programmer to insert

4

Property CUDA GCN MIC
Programming models CUDA, OpenCL OpenCL, C++ AMP OpenCL, Cilk, TBB,

LEO, OpenMP
Thread Scheduling Hardware Hardware Software
Programmer Managed Cache Yes Yes No
Global Synchronization No No Yes
L2 Cache Type Shared Private per core Private per core
L2 Total Size upto 1.5MB upto 0.5MB 25MB
L2 Line-size 128 64 64
L1 Data Cache Read-only + Read-write Read-only Read-write
Native Mode No No Yes

Table 1: Comparison of Heterogeneous Architectures

directives, or, pragmas, on the compute-intensive parallel regions that can be
offloaded to an accelerator. Optionally, the programmer can also prescribe the
data movements between the CPU and the accelerator.

In general, many OpenACC constructs are similar to those of OpenMP. A
major distinguishing factor is the parallelism deployment. While OpenMP sup-
ports just a single level, OpenACC parallelism manifests in three levels. (The
offloading model in the latest version of OpenMP (V4.0) supports multi-level
parallelism similar to OpenACC, but existing compilers do not support the of-
floading model yet.) A parallel section can be split into gangs, which can further
be split into workers, which can in turn control vectors. The presence of mul-
tiple levels helps in making use of the massive parallelism in the heterogeneous
architectures. Secondly, these levels make it easier to map the parallelism to dif-
ferent architectures, e.g., in CUDA, the gangs can be mapped to threadblocks
and workers can be mapped to threads of a threadblock. OpenACC allows the
programmer to write a code without explicit memory transfer clauses, but for
enhancing the performance, programmer can provide additional clauses, such as
data copy-in and copy-out.

3 Overview of OpenARC Framework

Optimization Architecture
Data Transfer Optimization Common
Parallel Loop Swap Common
Tree-based Reduction Generation Common
Aligned Memory Access Generation Common
Loop Unrolling Common
Texture Memory Loading CUDA
Automatic Shared Memory Loading CUDA, GCN
Pitched Memory Allocation CUDA

Table 2: Optimizations Performed by OpenARC (Partial list)

OpenARC [9] is an open-source compiler framework for C-based OpenACC
programs. It is built on top of Cetus [4] infrastructure, a C-based source-to-source
translation framework. The OpenARC Intermediate Representation (IR) [2] is

5

derived from the very high-level, human-readable IR of Cetus. OpenARC cur-
rently supports OpenACC version 1.0, and some features of version 2.0a [11].
Current OpenARC version supports three architectures, namely, NVIDIA CUDA
GPUs, AMD GPUs and Intel Xeon Phi coprocessors.

Setting Description
num gangs Number of gangs that operate on a parallel region
num workers Number of worker threads that belong to a gang

num vectors Number of vector threads that belong to a worker 4

1D Blocking Using a single parallel loop
2D Blocking Using nested parallel loops
Loop Collapse Collapse nested loops so as to increase the iteration space
Tiling Tile the parallel loops to gain cache benefits
Data Operations Creation, destruction and copies

Table 3: OpenACC Program Settings that Affect Performance

3.1 Compiler and Runtime

OpenARC compiler is a source-to-source translation system. It translates the
input OpenACC program into a CUDA program for NVIDIA CUDA GPUs,
and into OpenCL programs for AMD GCN GPUs and Intel MICs. OpenARC
contains a runtime system that handles offloading of code sections on the accel-
erators and maintains data mappings between the CPU and accelerators.

The compiler, along with the runtime system support brings out certain
optimizations as shown in table 2. While some optimizations are architecture-
dependent, others are common.

3.2 Automatic Tuning

Apart from compiler instrumented optimizations, programmer-specified program
settings can affect the performance of an OpenACC program. Table 3 shows a
description of such program settings. The programmer must choose the suitable
program settings and compiler optimizations to obtain high performance. Due
to a large search space, the task of tuning an OpenACC program is a non-trivial.
OpenARC compiler therefore assists the programmer by providing an automatic
tuning system, as shown in Fig. 1. The overall tuning process is as follows:

1) Search Space Pruner automatically prunes the exponential search space by
choosing certain compiler optimizations and program settings that can affect the
program performance. 2) With the resultant compiler optimizations and program
settings, Tuning Configuration Generator generates all possible program config-
urations, each containing different compiler optimizations and program settings.
These configurations guide the rest of the OpenARC compilation passes to gen-
erate configuration-specific output accelerator programs. 3) Then, the Tuning

4OpenARC currently does not support vectors, as most CUDA/OpenCL devices
support only two-level parallelism.

6

Engine compiles and executes these code variants to find the best performing
configuration. Note that the best performing configuration is specific to a given
program on a given architecture.

Optimization Space
 Navigator Tuning Configuration

 Generator

Search Space Pruner

Remaining(OpenARC(Passes(

OpenARC(code((Output((IR(from
OpenACC(Annota8on(parser)(

Tunable(((((((
parameters(

Tuning((((((((((((
configura8on(

Output((((((((
accelerator(
program(

Compilation,
Execution, and
Measurement

Performance(

Op8miza8on((
space(setup((

 Tuning Engine

OpenARC(IR(

Programmers(can(replace(
the(tuning(engine(with(
any(custom(engine.(

Fig. 1: A Built-in OpenARC Tuning Framework. The figure shows that the tuning-
related passes are invoked after the OpenACC annotation parser in the overall
compilation flows.

4 Performance Portability Evaluation

In this section, we evaluate the performance portability of OpenACC. To do so,
we analyse the effects of different program settings and compiler optimizations on
different architectures. With an automatic tuning system provided by OpenARC,
we find the best performing configurations on each architecture, and analyse how
these configurations perform on other architectures.

Table 4: System setup used in the evaluation

Accelerator Card Host CPU Driver OS Memory
NVIDIA
CUDA

GTX 680 (Ke-
pler)

Intel Xeon E5520, 4
cores, 8 threads

CUDA 5.0,
OpenCL 1.1

Scientific
Linux 6.4

12GB

AMD GPU Radeon HD
7970 (GCN)

2×Intel Xeon E5520, 4
cores, 8 threads

OpenCL 1.2 Scientific
Linux 6.4

12GB

Intel Xeon Phi Knights Cor-
ner (MIC)

2×Intel Xeon E5-2670, 8
cores, 16 threads

OpenCL 1.2 CentOS
6.2

256 GB

4.1 Experimental Setup

Table 4 describes the system setup used for this evaluation. We use twelve Ope-
nACC programs in the evaluation, which were manually ported from OpenMP.

7

JACOBI , LAPLACE, MATMUL and SPMUL are four kernels, while SRAD,
HOTSPOT, NW, LUD, BFS, BACKPROP, KMEANS and CFD are applica-
tions from the Rodinia benchmark suite [3]. These OpenACC programs were
automatically ported to three different architectures (CUDA, GCN, and MIC)
by the OpenARC compiler. Table 5 describes the input sizes used for the eval-
uation. The focus of our evaluation is to provide insights into the architectural
aspects of OpenACC portability, but not to compare the performance of indi-
vidual architectures. We first describe the effects of various program settings
and compiler optimizations on different architectures, which evaluates their per-
formance portability. We next present results of the achieved overall OpenACC
performance portability.

Table 5: Benchmarks - Input Specification

Benchmark Input Benchmark Input
JACOBI grid: 8192 × 8192, 10 iterations LAPLACE grid: 8192×8192, 1000 iterations
MATMUL matrix size 4096 × 4096 SPMUL kkt power
SRAD grid : 4096 × 4096 HOTSPOT gird 4096 × 4096
NW Matrix size : 4096 LUD Matrix size : 2048
BACKPROP Input weights : 655360 KMEANS 819200 data points
CFD 232K elements BFS No. of nodes : 16 million

4.2 Arranging OpenACC Parallelism

In this section, we describe how the arrangement of parallelism impacts per-
formance in OpenACC programs with nested parallel loops. To do so, we use
three different versions. 1D and 2D versions are similar to the ones shown in
listings 1.1 and 1.2. The third version uses the loop collapsing clause, which
essentially provides a larger iteration space to exploit more parallelism.

Listing 1.1: Single-level (1D) Par-
allel Version of Jacobi

#pragma acc parallel num_gangs(1024) num_workers(64)

{

#pragma acc loop gang worker

for (j = 1; j <= SIZE; j++) {

for (i = 1; i <= SIZE; i++)

a[i][j] = (b[i - 1][j] + b[i + 1][j]

+ b[i][j - 1] + b[i][j + 1]) / 4.0f;

}

}

Listing 1.2: Two-level (2D) Par-
allel Version of Jacobi

#pragma acc parallel num_gangs(1024) num_workers(64)

{

#pragma acc loop gang

for (i = 1; i <= SIZE; i++) {

#pragma acc loop worker

for (j = 1; j <= SIZE; j++)

a[i][j] = (b[i - 1][j] + b[i + 1][j]

+ b[i][j - 1] + b[i][j + 1]) / 4.0f;

}

}

Figures 2, 3 and 4 depict the performance of 1D, 2D and loop collapsed pro-
gram versions when the number of workers is varied on three benchmarks that
contain nested parallel loops. The execution times for a benchmark are normal-
ized with respect to the best execution time of the corresponding benchmark on
a target architecture. In these experiments, the number of gangs was fixed to
a large constant number (1024), and the number of workers was varied. Fig. 2
shows the effects of such variation on CUDA, while Fig. 3 shows the effects on
GCN. For both these architectures, if the number of workers used is low (i.e.

8

Fig. 2: NVIDIA CUDA Fig. 3: AMD GCN

Fig. 4: Intel MIC

8 or 16), the performance is poor owing to the resource underutilization, since
the SIMD width on CUDA is 32, while on GCN, it is 16. Since the outer par-
allel loop in these benchmarks has a high iteration count, parallelizing only the
outer loop can suffice, especially if the loop body is small, e.g., in the JACOBI
benchmark. On JACOBI, 1D and 2D versions perform almost equivalently on
both GCN and CUDA. However, if the loop body is bigger, which is the case in
SRAD and HOTSPOT benchmarks, the 1D versions perform poorer, compared
to the 2D and collapsed versions. Resource underutilization is the reason for
this behavior. As an example, consider the case with 1024 gangs and 16 work-
ers, leading to 16384 total threads. In the 1D version, since only the outer loop
is parallelized, 4096 iterations of SRAD would be scheduled on 16384 threads,
with only the first 4096 threads performing useful work. This leads to resource
underutilization. Note that on all these benchmarks, as the no. of workers grows
large, the execution times saturate on CUDA and GCN. A deviating behavior to
this observation is the performance of 1D HOTSPOT with 512 workers, on the
GCN architecture - the higher number of workers leads to resource contention,
resulting in poorer performance.

While the trends on the GPU architectures are almost similar, behavior
on Intel MIC is quite different (Fig. 4). Notice that as the number of work-
ers is increased, 1D versions perform much worse, while the 2D versions main-
tain the same performance. This unintuitive behavior is explained due to the

9

software-thread management that MIC employs. At the beginning of execution,
240 threads are launched by the MIC driver, owing to the presence of 240 hard-
ware threads. OpenCL workgroups are scheduled on these threads at runtime.
When 16 workers are used, with 1024 gangs, to distribute 8192 iterations of
the JACOBI kernel’s outer loop, the total threads, as seen by the OpenACC
programmer, are 1024 × 16 = 16384. Since the loop iteration count is less than
this number, only the first 8192 threads would perform useful work. The first
8192 threads are placed in 8192/16 = 512 workgroups(gangs), which in turn run
on 240 software threads, leading to a considerably good performance. However,
if the number of workers is 512, then only the first 8192/512 = 16 workgroups
would be placed on the 240 software threads, leading to a huge resource under-
utilization. So, despite of the number of workgroups being high, as suggested
by the Intel OpenCL guide [6], the performance can be low, depending upon
the workgroup size. In the 2D case, however, the outer loop of 8192 iterations
is always split across 1024 gangs, leading to every workgroup performing use-
ful work. Therefore, on MIC, for 1D versions, the lower the number of workers,
better is the performance. Note however that when the number of workers falls
below 16 (SIMD width on MIC), the performance reduces due to the lack of
vectorization. Intel compiler performs scalarization of the kernel in such cases.

4.3 Effects of Memory Access Coalescing

Most heterogeneous architectures display enhanced performance if consecutive
threads access consecutive memory locations in a parallel program. Loop order-
ing has a high impact on determining the nature of memory accesses. Loop in-
terchange is therefore a primary optimization on heterogeneous architectures [8].
Fig. 5 shows effects of such contiguous memory accesses on three benchmarks,
JACOBI, HOTSPOT and SRAD. These benchmarks work on a grid, and ac-
cesses are made primarily to the neighboring elements. To measure the memory
effects, we manually interchanged the loop order to obtain two versions. First
version consisted of consecutive threads accessing contiguous elements in a ma-
trix row (coalesced accesses). The second one did so for contiguous elements
in a matrix column (non-coalesced accesses). It can be clearly observed from
Fig. 5 that coalesced accesses are crucial to high-performance on all accelera-
tors. The performance impact is relatively less on MIC, owing to its large L2
cache (25MB).

4.4 Effects of Aligned Memory Accesses

Because all tested accelerators are based on SIMD architectures, their memory
interfaces are most efficient when data are accessed in an aligned manner. Mis-
aligned accesses will incur unrequested data being transferred, but the amount of
the unnecessarily transferred data differs in each architecture. Moreover, the ad-
ditional data may be used by later threads through L2 cache, having a prefetch-
ing effect. Therefore, the overall penalty of the misaligned accesses may not be
statically predictable. Fig. 6 shows the effects of the aligned memory accesses on
both regular (MATADD - a synthetic kernel demonstrating regular, continuous

10

accesses) and irregular (SPMUL) benchmarks, where input data for misaligned
versions are manually padded and shifted, and corresponding array index ex-
pressions are also shifted accordingly. The results indicate that memory access
alignment have noticeable performance impact on programs with regular, contin-
uous access patterns (MATADD), but less important than memory coalescing,
as shown in Fig. 5. To verify the prefetching effect through L2 cache, we created
no-caching versions of the translated CUDA programs by manually modifying
PTX codes to bypass L2 cache (CUDA (no-HW caching)). Comparing caching
versions (CUDA) with no-caching versions (CUDA(no-HW caching)) suggests
that aligned accesses are less important in architectures with hardware caching,
due to prefetching effects. The figure also shows that MIC has different behavior
than CUDA and GCN; on MIC, irregular programs (SPMUL) may also have
some benefits from aligned accesses due to large L2 caches. The abnormal per-
formance drop MATADD2D is caused by too much prefetching; profiling results
show that MIC performs more aggressive hardware prefetching (a built-in hard-
ware feature in MIC) on aligned version of MATADD2D, but that causes more
L2 cache conflicts, incurring more L2 cache misses.

Fig. 5: Memory Coalescing Bene-
fits on Different Architectures : MIC
is impacted the least by the non-
coalesced accesses

Fig. 6: Benefits of Aligned Memory
Accesses on Different Architectures,
where each benchmark is configured
with different thread mappings. (The
number of gangs decreases in v1, v2,
and v3 order, while the number of
workers is fixed.)

4.5 Tiling Transformation

The traditional tiling transformation is intended at increasing the temporal lo-
cality of data. It does so by blocking the computation and working on one block
at a time, so that this block can fit in the cache. The transformation comprises
loop stripmining, followed by loop interchange. OpenACC standard version 2.0
supports tiling with an additional clause that can be placed on loops.

11

Fig. 7: Effects of caching read-only
data on Texture Memory in CUDA

Fig. 8: Impact of Tiling Transforma-
tion : MATMUL shows higher benefits
than JACOBI owing to more contigu-
ous accesses

Fig. 8 shows the performance impact of tiling on JACOBI and MATMUL
kernels for three different tile sizes. Tile sizes used are 32×32, 64×64, 128×128,
respectively, except for MATMUL on MIC where they were 64×2, 64×4 and
64×8. Since all these architectures have a relatively small L1 cache, which is
shared among many gangs, tiling can fail to provide performance benefits owing
to the unpredictable cache accesses made by different gangs. However, on L2
cache, due to its larger size, we could observe a reduction in misses, resulting in
performance improvements. The performance benefits are larger in MATMUL
than in JACOBI owing to a more regular access pattern. The stellar perfor-
mance improvement (1.7x) was seen on GCN on MATMUL, with about 30% re-
duction in cache misses. The overheads of tiling transformation include the extra
loops and their corresponding conditions, which can outweigh caching benefits in
certain cases. Using tiling transformation along with the programmer-managed
cache can improve the tiling performance further.

Fig. 9: Effects of Loop Unrolling - MIC shows benefits on unrolling

4.6 Exploiting Device-specific Memories

In order to maintain generality, the OpenACC standard fails to provide con-
structs to make use of device-specific memories, like textures, on CUDA and

12

AMD GPUs. To atone for this limitation, the OpenARC compiler can auto-
matically detect the presence of read-only data structures and can place these
data elements on device-specific memories. Fig. 7 shows the performance effects
of placing read-only data structures on CUDA texture memory on four bench-
marks, namely, CFD, SRAD, SPMUL and NW. The performance gain can be as
high as 67% due to the utilization of texture memory.

4.7 Loop Unrolling

Loop unrolling is a common compiler optimization. By unwinding the loop body,
the overhead of index calculation and branching can be reduced. With the help
of OpenARC, we unrolled the loops inside kernel regions by various factors
and analysed the effects. Fig. 9 shows the unrolling effects on four different
benchmarks, which contained loops inside kernel bodies. The largest benefits
are seen on MIC, with the speed-up being as high as 17%. We observed that
on CUDA, the underlying nvcc compiler performs unrolling itself, leading to no
performance benefits due to further unrolling.

Fig. 10: Performance Portability Evaluation: Best performing OpenACC program
on one architecture may not produce best performance on another architecture.
Tuning can be highly beneficial over the baseline translated codes.

4.8 Performance Portability Evaluation using OpenARC
Auto-Tuning

We now evaluate the achieved OpenACC performance portability by our com-
piler and runtime system. To do so, we execute the best performing program
configuration of one architecture on other architectures and compare the ob-
tained performance with the best possible performance that could be obtained
on those architectures. We therefore must generate the best performing config-
uration of every benchmark on each architecture. We generate these program
configurations, which consist of program settings and compiler optimizations,
using the OpenARC tuning system.

13

Fig. 10 displays the cross-architecture performance comparison of the indi-
vidual benchmarks. The results on the left are run on CUDA, the ones in the
middle are run on GCN, while the rightmost ones are run on MIC. On CUDA,
for a given benchmark, we found out the best configuration through the tun-
ing system, and then compared its performance against the best configuration
of the same benchmark on GCN and MIC architectures. The process was re-
peated for GCN and MIC. Fig. 11 shows the performance portability achieved
across all benchmarks. The numbers in this figure are calculated by taking a
geometric mean of the speedups achieved by every benchmark in Fig. 10. Each
entry in the box represents the percentage of the best performance achieved on
the corresponding architecture. The primary reasons for the performance gap
were seen to be: (i) parallelism arrangement, (ii) usage of device-specific memo-
ries, and (iii) other architecture-specific optimizations, e.g., using pitched malloc
on CUDA. It is worthwhile to note that the performance portability is higher
among the GPU architectures. Note that the data transfer optimizations are
completely architecture-independent for the evaluated devices; these optimiza-
tions, which optimize data allocations and transfers, are equally beneficial on all
architectures.

The dots in Fig. 10 correspond to the secondary vertical axis (on the right).
They display the performance improvement achieved by OpenARC automatic
tuning over the baseline translated versions, for each benchmark on every archi-
tecture. The baseline versions are the default versions obtained from the com-
piler which uses heuristics to set the compiler options and program settings. The
benefits of tuning are evident, with the maximum speedup being as high as 22x.

Fig. 11: Performance Portability
Achieved across benchmarks : Num-
ber in each box represents percentage
of the best performance obtained

Fig. 12: Comparison of hand-written
CUDA/OpenCL programs against
auto-tuned OpenARC code versions.
Tuned OpenACC programs perform
reasonably well against hand-written
codes

4.9 Performance Comparison Against Hand-Written Codes

We now present the performance comparison of hand-written CUDA/OpenCL
programs against OpenARC generated versions on different architectures (Fig. 12).

14

For this comparison, we used those benchmarks from Rodinia suite that provided
both CUDA and OpenCL versions. On benchmarks that benefit less from the
programmer-managed caches, the performance of hand-written versions matches
that of the OpenARC versions. Such benchmarks include BFS, BACKPROP
and CFD. OpenARC version of BFS outperforms the hand-written OpenCL
program due to the sub-optimal parallelism arrangement. In the case of LUD
benchmark, which benefits highly due to the programmer-managed caches, the
hand-written versions outperform since the automatic shared memory loading is
not possible. However, since MIC lacks programmer-managed caches, OpenARC
performs decently with respect to the hand-written OpenCL program on LUD.
On KMEANS, OpenARC performs better than the hand-written code on MIC
due to the compiler instrumented unrolling. The out-performance of CFD on
CUDA is due to the automatic texture memory usage instrumented by Ope-
nARC. The geometric mean bars in Fig. 12 indicate that OpenARC can reach
82%, 81% and 92% of the hand-written codes’ performance on CUDA, GCN and
MIC architectures respectively.

5 Conclusion and Future Work

Programming models have remained a key obstacle in the widespread adoption
of accelerators for general purpose computing. While different high-level pro-
gramming models have been proposed, there has been a little understanding
on the portability aspects of such models. This paper has tried to analyse the
portability of one such programming model, OpenACC. The paper gauged the
performance portability of the OpenACC programming model across three ma-
jor accelerators : NVIDIA CUDA GPUs, AMD GCN GPUs, and Intel Xeon
Phi Coprocessors (MIC). The evaluation was performed by running program
configurations achieving the top performance on one architecture on another ar-
chitecture to see if the top performance could be achieved. Our analysis shows
that while code portability is achievable, performance portability eludes a com-
mon programming model, owing to the diversity in the architectures that ne-
cessitates architecture-specific optimizations. We are tackling this issue in our
ongoing work. Our plan is to use automatic runtime-instrumentation to achieve
performance portability across different architectures.

Acknowledgements

The paper has been authored by Oak Ridge National Laboratory, which is man-
aged by UT-Battelle, LLC under Contract #DE-AC05-00OR22725 to the U.S.
Government. Accordingly, the U.S. Government retains a non-exclusive, royalty-
free license to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes. This research is sponsored
by the Office of Advanced Scientific Computing Research in the U.S. Depart-
ment of Energy. This research is sponsored by the Office of Advanced Scientific
Computing Research in the U.S. Department of Energy. The final publication is
available at Springer (http://www.springer.com/gp/).

15

References

1. The heterogeneous offload model for intel many integrated core architec-
tures. [Online]. Available: http://software.intel.com/sites/default/files/

article/326701/heterogeneous-programming-model.pdf, (Accessed June 25,
2014)

2. OpenARC: Open Accelerator Research Compiler. [Online]. Available: http://ft.
ornl.gov/research/openarc, (Accessed June 25, 2014)

3. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., ha Lee, S., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: Proceedings of the
IEEE International Symposium on Workload Characterization (IISWC) (2009)

4. Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: A source-
to-source compiler infrastructure for multicores. IEEE Computer 42(12), 36–42
(2009)

5. Han, T.D., Abdelrahman, T.S.: hiCUDA: a high-level directive-based language
for GPU programming. In: GPGPU-2: Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units. pp. 52–61. ACM (2009)

6. Intel: OpenCL Design and Programming Guide for the Intel Xeon Phi Co-
processor. [Online]. Available: http://software.intel.com/en-us/articles/

opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor,
(Accessed June 25, 2014)

7. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP programming and tuning
for GPUs. In: SC’10: Proceedings of the 2010 ACM/IEEE conference on Super-
computing. IEEE press (2010)

8. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: A compiler framework
for automatic translation and optimization. In: ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP). pp. 101–110. ACM
(Feb 2009)

9. Lee, S., Vetter, J.S.: Openarc: Open accelerator research compiler for directive-
based, efficient heterogeneous computing. In: Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing. pp. 115–
120. HPDC ’14, ACM, New York, NY, USA (2014), http://doi.acm.org/10.

1145/2600212.2600704

10. NVIDIA: CUDA. [Online]. Available: https://developer.nvidia.com/cuda-zone
(2013), (Accessed June 25, 2014)

11. OpenACC: OpenACC: Directives for Accelerators. [Online]. Available: http://

www.openacc-standard.org (2011), (Accessed June 25, 2014)
12. OpenCL: OpenCL. [Online]. Available: http://www.khronos.org/opencl/ (2013),

(Accessed June 25, 2014)
13. Ravi, N., Yang, Y., Bao, T., Chakradhar, S.: Apricot: An optimizing compiler and

productivity tool for x86-compatible many-core coprocessors. In: Proceedings of the
26th ACM International Conference on Supercomputing. pp. 47–58. ICS ’12, ACM,
New York, NY, USA (2012), http://doi.acm.org/10.1145/2304576.2304585

14. Spafford, K., Meredith, J.S., Lee, S., Li, D., Roth, P.C., Vetter, J.S.: The tradeoffs
of fused memory hierarchies in heterogeneous architectures. In: ACM Computing
Frontiers (CF). ACM, Cagliari, Italy (2012)

15. Vetter, J.S. (ed.): Contemporary High Performance Computing: From Petascale
Toward Exascale, CRC Computational Science Series, vol. 1. Taylor and Francis,
Boca Raton, 1 edn. (2013)

