
EFFECTS OF COMPILER

OPTIMIZATIONS IN

OPENMP TO CUDA TRANSLATION

Amit Sabne, Putt Sakdhnagool and Rudolf Eigenmann

Motivation

 Our Goal: To determine the impact of individual

optimization techniques in the OpenMP to CUDA

translator.

Evaluating the Impact of Optimization

Techniques

 Bases our study on OpenMPC systems

 Uses method from Blume study[1]

 Iteratively turns off one optimization at a time from the

highest-optimized program variant

 Measures the performance in term of slowdown

incurred

How can we find the “best” combination of

optimization techniques?

Finding Best Combination of

Optimization Techniques

 The are 18 optimization techniques available in OpenMPC as

compiler flags.

OpenMPC Optimization Techniques

Program
Environment
Configuration

• cudaThreadBlockSize=N

• assumeNonZeroTripLoop

Data Caching
Strategy

• shrdSclrCachingOnReg

• shrdArryElmtCachingOnReg

• shrdSclrCachingOnSM

• prvtArryCachingOnSM

• shrdArryCachingOnTM

• shrdSclrCachingOnConst

• shrdArryCachingOnConst

Data Offloading
Optimization

• useMallocPitch

• useGlobalGMalloc

• globalGMallocOpt

• cudaMallocOptLevel=N

• cudaMemTrOptLevel=N

Code
Transformantion

• localRedVarConf=N

• useMatrixTranspose

• useParallelLoopSwap

• useUnrollingOnReduction

Finding Best Combination of

Optimization Techniques

 Exhaustive Search

 Search space is very large (2n combinations for n on-off
flags)

 Pruned Exponential Search (PE)

 Used by OpenMPC tuning system

 Use exhaustive search on pruned search space

 The search space is reduced by using aggressive pruning heuristic.

 Problems with PE

 Search space is still large

 Aggressive pruning heuristics may eliminate the best optimization

combination

Finding Best Combination of

Optimization Techniques

 Another Problem: Runtime Variation

 Changes in the system that affect execution time of

measuring program

 On GPUs Program, most of the variations come

from memory transfer

NEW TUNING ALGORITHM

Modified Iterative Elimination (MIE)

 Based on Iterative elimination (IE) algorithm [2]

 O(n2) Complexity

 All optimization options are available at tuning time

For n optimization option {F1, F2, …, Fn}

Let B = [F1, F2, …, Fn] is the set of switched-on option

for i = 1 to n

 for Fj in B

 NextB = min_runtime(NextB, B - Fj) //Switches off Fj

 end for

 if NextB == B

 break

 end if

 B = NextB

end for

Modified Iterative Elimination (MIE)

 Dealing with runtime variation

 Averaging the execution time of multiple runs is needed to
reduce the effect of the variations

 On GPU program, memory transfer is the main source
of runtime variation

 Removes memory transfer time from execution time

 Memory transfer behavior must be the same between comparing
combination

 Only optimizations that change memory transfer behavior
need averaging across multiple

Modified Iterative Elimination (MIE)

 MIE separates tuning process into 4 phases

Phase 1

• Optimizations that affect memory transfer behavior

• Runs each IE stage multiple times and averages execution times for making decisions

Phase 2

• Optimizations that affect computation time

• Runs normal IE. Considers only computation time for making decision

Phase 3

• Optimizations that affect memory transfer behavior but depend on computation
optimization

Phase 4
• Optimizations that are independent from first three phases

Modified Iterative Elimination (MIE)

 MIE separates tuning process into 4 phases

Phase 1

• Memory Transfer optimization

• All data offloading optimization except useMallocPitch

Phase 2

• Computation optimization

• All program configuration environment and code transformation

Phase 3

• Dependent optimization

• useMallocPitch

Phase 4

• Independent optimization

• All data caching optimization

Modified Iterative Elimination (MIE)

 Tuning Results - Program Speedups

 Relative to PE result

Modified Iterative Elimination (MIE)

 Tuning Results – Tuning time

IMPACT OF INDIVIDUAL

OPTIMIZATION OPTIONS

Impact of Individual Optimization

Options

 Experiment Setup

 3 GHz AMD dual-core processor

 12 GB of RAM

 NVIDIA Quadro FX 5600 GPU

 16 SM clocked at 1.35 GHz

 1.5 GB of device memory

 All OpenMPC generated codes are compiled with nvcc

with –O3 option

Result-Data Offloading Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

cudaMallocOptLevel=1 cudaMemTrOptLevel=2 globalGMallocOpt useGlobalGMalloc useMallocPitch

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

Result-Data Caching Strategy

0

0.2

0.4

0.6

0.8

1

1.2

prvtArryCachingOnSM shrdArryCachingOnConst shrdArryCachingOnTM shrdArryElmtCachingOnReg

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

0

0.2

0.4

0.6

0.8

1

1.2

shrdSclrCachingOnConst shrdSclrCachingOnReg shrdSclrCachingOnSM

s
p

e
e
d

u
p

Result-Program Environment

Configuration

0

0.2

0.4

0.6

0.8

1

1.2

assumeNonZeroTripLoops cudaThreadBlockSize localRedVarConf=0

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

Result-Code Transformation

0

0.2

0.4

0.6

0.8

1

1.2

useMatrixTranspose useParallelLoopSwap useUnrollingOnReduction

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

CONCLUSION

Conclusion

 Analyzes the performance of GPU optimization
techniques presented in OpenMPC
 Data-offloading, code transformation, and data caching are

important optimizations for GPU programs

 Explicit GPU programming needs CUDA-extension to specify

data-offloading and data-caching for best performance

 Data-offloading and code transformation optimizations

presented in this work should be applicable for any future

accelerators

 New Tuning System called MIE

 Significantly reduce tuning time

 Be able to tolerate runtime variation

References

 [1] Blume, W., Eigenmann, R.: Performance analysis
of parallelizing compilers on the perfect
benchmarks programs. IEEE Transactions on Parallel
and Distributed Systems 3 (1992) 643-656

 [2] Pan, Z., Eigenmann, R.: Fast and eective
orchestration of compiler optimizations for
automatic performance tuning. In: Proceedings of
the International Symposium on Code Generation
and Optimization. CGO '06, Washington, DC, USA,
IEEE Computer Society (2006) 319-332

