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Motivation 

 

 Our Goal: To determine the impact of individual 

optimization techniques in the OpenMP to CUDA 

translator. 



Evaluating the Impact of Optimization 

Techniques 

 Bases our study on OpenMPC systems 

 Uses method from Blume study[1] 

 Iteratively turns off one optimization at a time from the  

highest-optimized program variant  

 Measures the performance in term of slowdown 

incurred 

 

How can we find the “best” combination of 

optimization techniques? 



Finding Best Combination of 

Optimization Techniques 

 The are 18 optimization techniques available in OpenMPC as 

compiler flags.  

OpenMPC Optimization Techniques 

Program 
Environment 
Configuration 

• cudaThreadBlockSize=N 

• assumeNonZeroTripLoop 

Data Caching 
Strategy 
 

• shrdSclrCachingOnReg 

• shrdArryElmtCachingOnReg 

• shrdSclrCachingOnSM 

• prvtArryCachingOnSM 

• shrdArryCachingOnTM 

• shrdSclrCachingOnConst 

• shrdArryCachingOnConst 

Data Offloading 
Optimization 
 

• useMallocPitch 

• useGlobalGMalloc 

• globalGMallocOpt 

• cudaMallocOptLevel=N 

• cudaMemTrOptLevel=N 

Code 
Transformantion 
 

• localRedVarConf=N 

• useMatrixTranspose 

• useParallelLoopSwap 

• useUnrollingOnReduction 



Finding Best Combination of 

Optimization Techniques 

 Exhaustive Search  

 Search space is very large (2n combinations for n on-off 
flags) 

 Pruned Exponential Search (PE) 

 Used by OpenMPC tuning system 

 Use exhaustive search on pruned search space 

 The search space is reduced by using aggressive pruning heuristic. 

 Problems with PE 

 Search space is still large 

 Aggressive pruning heuristics may eliminate the best optimization 

combination 



Finding Best Combination of 

Optimization Techniques 

 Another Problem: Runtime Variation 

 Changes in the system that affect execution time of 

measuring program 

 On GPUs Program, most of the variations come 

from memory transfer 



NEW TUNING ALGORITHM  



Modified Iterative Elimination (MIE) 

 Based on Iterative elimination (IE) algorithm [2] 

 O(n2) Complexity  

 All optimization options are available at tuning time 

For n optimization option {F1, F2, …, Fn} 

 

Let B = [F1, F2, …, Fn] is the set of switched-on option 

 

for i = 1 to n  

 for Fj in B 

  NextB = min_runtime(NextB, B - Fj) //Switches off Fj 

 end for 

 if NextB == B 

  break 

 end if 

 B = NextB 

end for 



Modified Iterative Elimination (MIE) 

 Dealing with runtime variation 

 Averaging the execution time of multiple runs is needed to 
reduce the effect of the variations 

 

 On GPU program, memory transfer is the main source 
of runtime variation 

 Removes memory transfer time from execution time 

 Memory transfer behavior must be the same between comparing 
combination 

 Only optimizations that change memory transfer behavior 
need averaging across multiple  

 



Modified Iterative Elimination (MIE) 

 MIE separates tuning process into 4 phases 

 

Phase 1 

• Optimizations that affect memory transfer behavior 

• Runs each IE stage multiple times and averages execution times for making decisions 

Phase 2 

• Optimizations that affect computation time 

• Runs normal IE. Considers only computation time for making decision 

Phase 3 

• Optimizations that affect memory transfer behavior but depend on computation 
optimization 

Phase 4 
• Optimizations that are independent from first three phases 



Modified Iterative Elimination (MIE) 

 MIE separates tuning process into 4 phases 

 

Phase 1 

• Memory Transfer optimization 

• All data offloading optimization except useMallocPitch 

Phase 2 

• Computation optimization 

• All program configuration environment and code transformation 

Phase 3 

• Dependent optimization 

• useMallocPitch 

Phase 4 

• Independent optimization 

• All data caching optimization 



Modified Iterative Elimination (MIE) 

 Tuning Results - Program Speedups 

 Relative to PE result 



Modified Iterative Elimination (MIE) 

 Tuning Results – Tuning time 

 



IMPACT OF INDIVIDUAL 

OPTIMIZATION OPTIONS 



Impact of Individual Optimization 

Options 

 Experiment Setup 

 3 GHz AMD dual-core processor 

 12 GB of RAM 

  NVIDIA Quadro FX 5600 GPU 

 16 SM clocked at 1.35 GHz 

 1.5 GB of device memory 

 All OpenMPC generated codes are compiled with nvcc 

with –O3 option 



Result-Data Offloading Optimizations 
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Result-Data Caching Strategy 
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Result-Program Environment 

Configuration 
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Result-Code Transformation 
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CONCLUSION 



Conclusion 

 Analyzes the performance of GPU optimization 
techniques presented in OpenMPC 
 Data-offloading, code transformation, and data caching are 

important optimizations for GPU programs 

 Explicit GPU programming needs CUDA-extension to specify 

data-offloading and data-caching for best performance 

 Data-offloading and code transformation optimizations 

presented in this work should be applicable for any future 

accelerators  

 New Tuning System called MIE 

 Significantly reduce tuning time 

 Be able to tolerate runtime variation 
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