EFFECTS OF COMPILER
OPTIMIZATIONS IN
OPENMP TO CUDA TRANSLATION

Motivation

Our Goal: To determine the impact of individual
optimization techniques in the OpenMP to CUDA
translator.

Evaluating the Impact of Optimization
Techniques

Bases our study on OpenMPC systems
Uses method from Blume study[1]

lteratively turns off one optimization at a time from the
highest-optimized program variant

Measures the performance in term of slowdown
incurred

How can we find the “best”’ combination of
optimization techniques?

Finding Best Combination of
Optimization Techniques

1 The are 18 optimization techniques available in OpenMPC as
compiler flags.

OpenMPC Optimization Techniques

Program Data Caching Data Offloading Code
Environment Strategy Optimization Transformantion

Configuration

e cudaThreadBlockSize=N * shrdSclrCachingOnReg * useMallocPitch * localRedVarConf=N

* shrdArryElmtCachingOnReg « yse GlobalGMalloc * useMatrixTranspose

> durelaliceaiing Sl * globalGMallocOpt * useParallelLoopSwap

" prviArryCachingOnSM * cudaMallocOptlevel=N ¢ useUnrollingOnReduction

* shrdArryCachingOnTM »
* shrdSclrCachingOnConst * cudaMemTrOptlevel=N

* shrdArryCachingOnConst

* assumeNonZeroTripLoop

Finding Best Combination of
Optimization Techniques

Exhaustive Search
Search space is very large (2" combinations for n on-off
flags)

Pruned Exponential Search (PE)

Used by OpenMPC tuning system
Use exhaustive search on pruned search space

The search space is reduced by using aggressive pruning heuristic.
Problems with PE

Search space is still large

Aggressive pruning heuristics may eliminate the best optimization
combination

Finding Best Combination of
Optimization Techniques

Another Problem: Runtime Variation

Changes in the system that affect execution time of
measuring program

On GPUs Program, most of the variations come
from memory transfer

Table 2. Variations on GPU Programs

Benchmark Relative Standard Deviation |Relative Standard Dewviation| Ratio

for Memory Transfer Time (A)| for Computation Time (B) [(A/B)
NW (8192) 0.2395 0.0128 18.71
Jacobi (12288) 0.7394 0.0001 7394
CG (W) 0.2562 0.0706 3.63
FT (W) 0.1521 0.0112 13.58

NEW TUNING ALGORITHM

Modified Iterative Elimination (MIE)

Based on lterative elimination (IE) algorithm [2]
O(n?) Complexity
All optimization options are available at tuning time
For n optimization option {F4, F», ..., F,}
Let B =[F4, F,, ..., F,] is the set of switched-on option

fori=1ton
for F;in B
NextB = min_runtime(NextB, B - F)
end for
if NextB == B
break
end if
B = NextB
end for

Modified Iterative Elimination (MIE)

Dealing with runtime variation

Averaging the execution time of multiple runs is needed to
reduce the effect of the variations

On GPU program, memory transfer is the main source
of runtime variation

Removes memory transfer time from execution time

Memory transfer behavior must be the same between comparing
combination

Only optimizations that change memory transfer behavior
need averaging across multiple

Modified Iterative Elimination (MIE)

o1 MIE separates tuning process into 4 phases

Phase 4

~N
Optimizations that affect memory transfer behavior

Runs each IE stage multiple times and averages execution times for making decisions

J
N
Optimizations that affect computation time
Runs normal |IE. Considers only computation time for making decision
J
)
Optimizations that affect memory transfer behavior but depend on computation
optimization
J
N

Optimizations that are independent from first three phases

Modified Iterative Elimination (MIE)
—

71 MIE separates tuning process into 4 phases

~
* Memory Transfer optimization
* All data offloading optimization except useMallocPitch)
N
* Computation optimization
* All program configuration environment and code transformation
J
. ° ° \
* Dependent optimization
* useMallocPitch)
N
* Independent optimization
ot ¢ All data caching optimization

Modified Iterative Elimination (MIE)

o Tuning Results - Program Speedups

=1 Relative to PE result

1.8
16
i 1.4
E'.'I..I
i,
0.8
0.6

3 D & H P D e e Q@D

& @ﬁi‘yﬁ;fﬁ ”‘ﬂ“‘iﬂg o T (I

& 3 s
Benchmarks

Modified Iterative Elimination (MIE)
=

71 Tuning Results — Tuning time

Benchmark Tuning Time (mins)
Pruned Exhaustive Tuning|Modified IE Tuning

SRAD 538 23

FT (S) 2345 23

CG (S) 1108 17

CFD (97k) 1083 210

FT (A) 3680 97

Jacobi (12288)|98 55

IMPACT OF INDIVIDUAL
OPTIMIZATION OPTIONS

Impact of Individual Optimization
Options

Experiment Setup
3 GHz AMD dual-core processor
12 GB of RAM

NVIDIA Quadro FX 5600 GPU
16 SM clocked at 1.35 GHz

1.5 GB of device memory

All OpenMPC generated codes are compiled with nvcc
with —O3 option

Result-Data Offloading Optimizations

cudaMallocOptlevel=1 cudaMemTrOptlevel=2 globalGMallocOpt useGlobalGMalloc useMallocPitch

M backprop Mbfs Mcfd Mcg Mep ¥ ft Whotspot Mjacobi " lud = nw © spmul = srad

Result-Data Caching Strategy

shrdSclrCachingOnConst shrdSclrCachingOnReg shrdSclrCachingOnSM

prvtArryCachingOnSM shrdArryCachingOnConst shrdArryCachingOnTM shrdArryEImtCachingOnReg

B backprop BMbfs MHcfd Bcg Mep W ft Whotspot Mjacobi “lud " nw © spmul srad

Result-Program Environment

Configuration
-_

1.2

0.8

speedup
e
o

0.4 -

0.2 -

assumeNonZeroTripLoops cudaThreadBlockSize localRedVarConf=0

M backprop Mbfs Mcfd Mcg Mep ¥ ft Whotspot Mjacobi " lud = nw © spmul = srad

Result-Code Transformation

useMatrixTranspose useParallellLoopSwap useUnrollingOnReduction

M backprop Mbfs Mcfd Mcg Mep ¥ ft Whotspot Mjacobi " lud = nw © spmul = srad

CONCLUSION

Conclusion

Analyzes the performance of GPU optimization
techniques presented in OpenMPC

Data-offloading, code transformation, and data caching are
important optimizations for GPU programs

Explicit GPU programming needs CUDA-extension to specify
data-offloading and data-caching for best performance

Data-offloading and code transformation optimizations
presented in this work should be applicable for any future
accelerators

New Tuning System called MIE

Significantly reduce tuning time
Be able to tolerate runtime variation

References

[1] Blume, W., Eigenmann, R.: Performance analysis
of parallelizing compilers on the perfect
benchmarks programs. IEEE Transactions on Parallel

and Distributed Systems 3 (1992) 643-656

[2] Pan, Z., Eigenmann, R.: Fast and eective
orchestration of compiler optimizations for
automatic performance tuning. In: Proceedings of
the International Symposium on Code Generation
and Optimization. CGO '06, Washington, DC, USA,
|IEEE Computer Society (2006) 319-332

