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Motivation 

 

 Our Goal: To determine the impact of individual 

optimization techniques in the OpenMP to CUDA 

translator. 



Evaluating the Impact of Optimization 

Techniques 

 Bases our study on OpenMPC systems 

 Uses method from Blume study[1] 

 Iteratively turns off one optimization at a time from the  

highest-optimized program variant  

 Measures the performance in term of slowdown 

incurred 

 

How can we find the “best” combination of 

optimization techniques? 



Finding Best Combination of 

Optimization Techniques 

 The are 18 optimization techniques available in OpenMPC as 

compiler flags.  

OpenMPC Optimization Techniques 

Program 
Environment 
Configuration 

• cudaThreadBlockSize=N 

• assumeNonZeroTripLoop 

Data Caching 
Strategy 
 

• shrdSclrCachingOnReg 

• shrdArryElmtCachingOnReg 

• shrdSclrCachingOnSM 

• prvtArryCachingOnSM 

• shrdArryCachingOnTM 

• shrdSclrCachingOnConst 

• shrdArryCachingOnConst 

Data Offloading 
Optimization 
 

• useMallocPitch 

• useGlobalGMalloc 

• globalGMallocOpt 

• cudaMallocOptLevel=N 

• cudaMemTrOptLevel=N 

Code 
Transformantion 
 

• localRedVarConf=N 

• useMatrixTranspose 

• useParallelLoopSwap 

• useUnrollingOnReduction 



Finding Best Combination of 

Optimization Techniques 

 Exhaustive Search  

 Search space is very large (2n combinations for n on-off 
flags) 

 Pruned Exponential Search (PE) 

 Used by OpenMPC tuning system 

 Use exhaustive search on pruned search space 

 The search space is reduced by using aggressive pruning heuristic. 

 Problems with PE 

 Search space is still large 

 Aggressive pruning heuristics may eliminate the best optimization 

combination 



Finding Best Combination of 

Optimization Techniques 

 Another Problem: Runtime Variation 

 Changes in the system that affect execution time of 

measuring program 

 On GPUs Program, most of the variations come 

from memory transfer 



NEW TUNING ALGORITHM  



Modified Iterative Elimination (MIE) 

 Based on Iterative elimination (IE) algorithm [2] 

 O(n2) Complexity  

 All optimization options are available at tuning time 

For n optimization option {F1, F2, …, Fn} 

 

Let B = [F1, F2, …, Fn] is the set of switched-on option 

 

for i = 1 to n  

 for Fj in B 

  NextB = min_runtime(NextB, B - Fj) //Switches off Fj 

 end for 

 if NextB == B 

  break 

 end if 

 B = NextB 

end for 



Modified Iterative Elimination (MIE) 

 Dealing with runtime variation 

 Averaging the execution time of multiple runs is needed to 
reduce the effect of the variations 

 

 On GPU program, memory transfer is the main source 
of runtime variation 

 Removes memory transfer time from execution time 

 Memory transfer behavior must be the same between comparing 
combination 

 Only optimizations that change memory transfer behavior 
need averaging across multiple  

 



Modified Iterative Elimination (MIE) 

 MIE separates tuning process into 4 phases 

 

Phase 1 

• Optimizations that affect memory transfer behavior 

• Runs each IE stage multiple times and averages execution times for making decisions 

Phase 2 

• Optimizations that affect computation time 

• Runs normal IE. Considers only computation time for making decision 

Phase 3 

• Optimizations that affect memory transfer behavior but depend on computation 
optimization 

Phase 4 
• Optimizations that are independent from first three phases 



Modified Iterative Elimination (MIE) 

 MIE separates tuning process into 4 phases 

 

Phase 1 

• Memory Transfer optimization 

• All data offloading optimization except useMallocPitch 

Phase 2 

• Computation optimization 

• All program configuration environment and code transformation 

Phase 3 

• Dependent optimization 

• useMallocPitch 

Phase 4 

• Independent optimization 

• All data caching optimization 



Modified Iterative Elimination (MIE) 

 Tuning Results - Program Speedups 

 Relative to PE result 



Modified Iterative Elimination (MIE) 

 Tuning Results – Tuning time 

 



IMPACT OF INDIVIDUAL 

OPTIMIZATION OPTIONS 



Impact of Individual Optimization 

Options 

 Experiment Setup 

 3 GHz AMD dual-core processor 

 12 GB of RAM 

  NVIDIA Quadro FX 5600 GPU 

 16 SM clocked at 1.35 GHz 

 1.5 GB of device memory 

 All OpenMPC generated codes are compiled with nvcc 

with –O3 option 



Result-Data Offloading Optimizations 
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Result-Data Caching Strategy 

0

0.2

0.4

0.6

0.8

1

1.2

prvtArryCachingOnSM shrdArryCachingOnConst shrdArryCachingOnTM shrdArryElmtCachingOnReg

s
p

e
e
d

u
p

 

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

0

0.2

0.4

0.6

0.8

1

1.2

shrdSclrCachingOnConst shrdSclrCachingOnReg shrdSclrCachingOnSM

s
p

e
e
d

u
p

 



Result-Program Environment 

Configuration 
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Result-Code Transformation 
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CONCLUSION 



Conclusion 

 Analyzes the performance of GPU optimization 
techniques presented in OpenMPC 
 Data-offloading, code transformation, and data caching are 

important optimizations for GPU programs 

 Explicit GPU programming needs CUDA-extension to specify 

data-offloading and data-caching for best performance 

 Data-offloading and code transformation optimizations 

presented in this work should be applicable for any future 

accelerators  

 New Tuning System called MIE 

 Significantly reduce tuning time 

 Be able to tolerate runtime variation 
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