
EFFECTS OF COMPILER

OPTIMIZATIONS IN

OPENMP TO CUDA TRANSLATION

Amit Sabne, Putt Sakdhnagool and Rudolf Eigenmann

Motivation

 Our Goal: To determine the impact of individual

optimization techniques in the OpenMP to CUDA

translator.

Evaluating the Impact of Optimization

Techniques

 Bases our study on OpenMPC systems

 Uses method from Blume study[1]

 Iteratively turns off one optimization at a time from the

highest-optimized program variant

 Measures the performance in term of slowdown

incurred

How can we find the “best” combination of

optimization techniques?

Finding Best Combination of

Optimization Techniques

 The are 18 optimization techniques available in OpenMPC as

compiler flags.

OpenMPC Optimization Techniques

Program
Environment
Configuration

• cudaThreadBlockSize=N

• assumeNonZeroTripLoop

Data Caching
Strategy

• shrdSclrCachingOnReg

• shrdArryElmtCachingOnReg

• shrdSclrCachingOnSM

• prvtArryCachingOnSM

• shrdArryCachingOnTM

• shrdSclrCachingOnConst

• shrdArryCachingOnConst

Data Offloading
Optimization

• useMallocPitch

• useGlobalGMalloc

• globalGMallocOpt

• cudaMallocOptLevel=N

• cudaMemTrOptLevel=N

Code
Transformantion

• localRedVarConf=N

• useMatrixTranspose

• useParallelLoopSwap

• useUnrollingOnReduction

Finding Best Combination of

Optimization Techniques

 Exhaustive Search

 Search space is very large (2n combinations for n on-off
flags)

 Pruned Exponential Search (PE)

 Used by OpenMPC tuning system

 Use exhaustive search on pruned search space

 The search space is reduced by using aggressive pruning heuristic.

 Problems with PE

 Search space is still large

 Aggressive pruning heuristics may eliminate the best optimization

combination

Finding Best Combination of

Optimization Techniques

 Another Problem: Runtime Variation

 Changes in the system that affect execution time of

measuring program

 On GPUs Program, most of the variations come

from memory transfer

NEW TUNING ALGORITHM

Modified Iterative Elimination (MIE)

 Based on Iterative elimination (IE) algorithm [2]

 O(n2) Complexity

 All optimization options are available at tuning time

For n optimization option {F1, F2, …, Fn}

Let B = [F1, F2, …, Fn] is the set of switched-on option

for i = 1 to n

 for Fj in B

 NextB = min_runtime(NextB, B - Fj) //Switches off Fj

 end for

 if NextB == B

 break

 end if

 B = NextB

end for

Modified Iterative Elimination (MIE)

 Dealing with runtime variation

 Averaging the execution time of multiple runs is needed to
reduce the effect of the variations

 On GPU program, memory transfer is the main source
of runtime variation

 Removes memory transfer time from execution time

 Memory transfer behavior must be the same between comparing
combination

 Only optimizations that change memory transfer behavior
need averaging across multiple

Modified Iterative Elimination (MIE)

 MIE separates tuning process into 4 phases

Phase 1

• Optimizations that affect memory transfer behavior

• Runs each IE stage multiple times and averages execution times for making decisions

Phase 2

• Optimizations that affect computation time

• Runs normal IE. Considers only computation time for making decision

Phase 3

• Optimizations that affect memory transfer behavior but depend on computation
optimization

Phase 4
• Optimizations that are independent from first three phases

Modified Iterative Elimination (MIE)

 MIE separates tuning process into 4 phases

Phase 1

• Memory Transfer optimization

• All data offloading optimization except useMallocPitch

Phase 2

• Computation optimization

• All program configuration environment and code transformation

Phase 3

• Dependent optimization

• useMallocPitch

Phase 4

• Independent optimization

• All data caching optimization

Modified Iterative Elimination (MIE)

 Tuning Results - Program Speedups

 Relative to PE result

Modified Iterative Elimination (MIE)

 Tuning Results – Tuning time

IMPACT OF INDIVIDUAL

OPTIMIZATION OPTIONS

Impact of Individual Optimization

Options

 Experiment Setup

 3 GHz AMD dual-core processor

 12 GB of RAM

 NVIDIA Quadro FX 5600 GPU

 16 SM clocked at 1.35 GHz

 1.5 GB of device memory

 All OpenMPC generated codes are compiled with nvcc

with –O3 option

Result-Data Offloading Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

cudaMallocOptLevel=1 cudaMemTrOptLevel=2 globalGMallocOpt useGlobalGMalloc useMallocPitch

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

Result-Data Caching Strategy

0

0.2

0.4

0.6

0.8

1

1.2

prvtArryCachingOnSM shrdArryCachingOnConst shrdArryCachingOnTM shrdArryElmtCachingOnReg

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

0

0.2

0.4

0.6

0.8

1

1.2

shrdSclrCachingOnConst shrdSclrCachingOnReg shrdSclrCachingOnSM

s
p

e
e
d

u
p

Result-Program Environment

Configuration

0

0.2

0.4

0.6

0.8

1

1.2

assumeNonZeroTripLoops cudaThreadBlockSize localRedVarConf=0

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

Result-Code Transformation

0

0.2

0.4

0.6

0.8

1

1.2

useMatrixTranspose useParallelLoopSwap useUnrollingOnReduction

s
p

e
e
d

u
p

backprop bfs cfd cg ep ft hotspot jacobi lud nw spmul srad

CONCLUSION

Conclusion

 Analyzes the performance of GPU optimization
techniques presented in OpenMPC
 Data-offloading, code transformation, and data caching are

important optimizations for GPU programs

 Explicit GPU programming needs CUDA-extension to specify

data-offloading and data-caching for best performance

 Data-offloading and code transformation optimizations

presented in this work should be applicable for any future

accelerators

 New Tuning System called MIE

 Significantly reduce tuning time

 Be able to tolerate runtime variation

References

 [1] Blume, W., Eigenmann, R.: Performance analysis
of parallelizing compilers on the perfect
benchmarks programs. IEEE Transactions on Parallel
and Distributed Systems 3 (1992) 643-656

 [2] Pan, Z., Eigenmann, R.: Fast and eective
orchestration of compiler optimizations for
automatic performance tuning. In: Proceedings of
the International Symposium on Code Generation
and Optimization. CGO '06, Washington, DC, USA,
IEEE Computer Society (2006) 319-332

