
Effects of Compiler Optimizations in
OpenMP to CUDA Translation

Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann

Purdue University, West Lafayette IN 47907, USA

Abstract. One thrust of the OpenMP standard development focuses
on support for accelerators. An important question is whether or not
OpenMP extensions are needed, and how much performance difference
they would make. The same question is relevant for related efforts in
support of accelerators, such as OpenACC. The present paper pursues
this question. We analyze the effects of individual optimization tech-
niques in a previously developed system that translates OpenMP pro-
grams into GPU codes, called OpenMPC. We also propose a new tuning
strategy, called Modified IE (MIE), which overcomes some inefficiencies
of the original OpenMPC tuning scheme. Furthermore, MIE addresses
the challenge of tuning in the presence of runtime variations, owing to
the memory transfers between the CPU and GPU. MIE, on average, per-
forms 11% better than the previous tuning system while restricting the
tuning system time complexity to a polynomial function.

Keywords : GPU, CUDA, Tuning System, Compiler Optimizations

1 Introduction

OpenMP has established itself as a standard in parallel programming and is of
particular interest for today’s and future multicores. There is a large and growing
code base, the standard is well understood and documented, and there exists a
multitude of compilers and supporting tools. These features are of paramount
importance to the programmer. They help significantly reduce the difficulty and
the cost of developing parallel software.

The number of new parallel languages that have been proposed in even just
the past two decades is massive. The question of cost versus benefit arises with
every such proposal. Unfortunately, few quantitative analyses are available that
would allow one to find out if the same objective could have been achieved with
an existing language standard and what are costs and benefits of new versus old,
in terms of performance and productivity. Obviously, any new language will start
from zero in building a code base, compilers, tools, and programming experience.

? This work was supported, in part, by the National Science Foundation under grants
No. CNS-0720471, 0707931-CNS, 0833115-CCF, and 0916817-CCF.

2

A new language development has emerged in the context of new graphics
processing units, or accelerators. These devices offer promising avenues towards
low-energy, highly parallel computation for a class of applications. Among the
proposed programming languages are CUDA and OpenCL, both of which al-
low the programmer to access architecture-specific features. These architecture-
specific interfaces, however, significantly depart from the parallel programming
semantics offered by standards, such as OpenMP. The cost/benefit question
arises anew.

In previous work, we have addressed this cost/benefit question. We have pro-
vided quantitative comparisons of hand-written CUDA programs versus equiva-
lent programs written in OpenMP and translated to CUDA [1]. Using an auto-
matic translator and tuning system, called OpenMPC, we were able to achieve
performance results that came close to hand-coded CUDA on a large set of
benchmarks. The contribution of the present paper is to address three open
issues of that work.

– The previous work provided overall performance numbers. The breakdown
into individual techniques was not yet available. In the current paper, we
quantify the contributions of each individual technique. Of particular interest
in this analysis is also the importance of CUDA-specific OpenMP extensions,
which are generated automatically in the OpenMPC system.

– A key component of the OpenMPC is its tuning system, which empirically
searches through a large space of optimization variants and tries to find
the best. The initial OpenMPC system used an inefficient exhaustive search
mechanism. In this work, we use an improved navigation algorithm, signifi-
cantly reducing tuning time.

– A problem faced by all empirical tuning systems is the variability of execution
times, even for the same program executed repeatedly on the same platform
in single-user mode. This effect makes it difficult to correctly measure the
impact of an optimization technique. A common method is to average over
multiple runs, increasing tuning time. We have developed a new method
that identifies optimizations that are vulnerable to runtime variation and
uses increased measuring time only for those.

The remainder of the paper is organized as follows. Section 2 describes Open-
MPC and its available optimization options. It also identifies opportunities for
improvement in the present OpenMPC tuning system. Section 3 explains our
tuning mechanism for finding the best tuning options. Individual performance
analysis is shown in Section 4. Section 5 makes concluding remarks and mentions
ongoing work.

2 Overview of OpenMPC System

OpenMPC [1] is a programming framework that generates CUDA programs from
OpenMP programs. The framework includes an extended OpenMP program-
ming interface, a source-to-source translator, and an automatic tuning system.

3

The programming interface extends OpenMP with a new set of directives and
environment variables (henceforth referred to as CUDA extensions1) for control-
ling CUDA-related parameters and optimizations. OpenMP translates standard
OpenMP programs by applying a set of program transformations and by in-
serting CUDA extensions. OpenMPC includes an empirical tuning system that
automatically generates, prunes, and searches the optimization space and de-
termines the best combination of optimizations. Fig. 1 shows the workflow of
the OpenMPC translator. Fig. 2 displays a small example of the OpenMPC
translated CUDA code for Jacobi benchmark.

OpenMP
Code

CUDA	
Analyzer	 	

&	
Op0mizer	
(Cetus)	

Cetus
IR

OpenMPC	
Translator	

CUDA
Code

OpenMPC	 	
Tuning	
System	 	

Op0miza0on	
Configura0ons	 	 	

Fig. 1. OpenMPC workflow

#pragma omp parallel for private(i, j)

for (i = 1; i <= SIZE; i++){

for (j = 1; j <= SIZE; j++){

a[i][j]=(b[i-1][j]+b[i+1][j]+b[i][j-1]+b[i][j+1])/4.0f;

}}

(a)

__global__ void kernel(...){

int _bid = (blockIdx.x+(blockIdx.y*gridDim.x));

int _gtid = (threadIdx.x+(_bid*blockDim.x));

tid=(_gtid+1);

if (tid<=SIZE){

for (i=1; i<=SIZE; i ++){

a[i][j]=(b[i-1][tid]+b[i+1][tid]+b[i][tid-1]+b[i][tid+1])/4.0F;

}}}

(b)

Fig. 2. OpenMPC translation example. (a) source code in OpenMP (b) result CUDA
kernel from OpenMPC translation

1 Our CUDA extensions are not meant to be a proposal for extending the OpenMP
standard. They represent a research framework for exploring questions such as those
addressed in this paper.

4

2.1 Optimization options

There are 18 optimization options available in OpenMPC, grouped into 4 cat-
egories: (1) Program environment configuration, (2) Data caching strategy, (3)
Data offloading optimizations, and (4) Code transformation. Table 1 shows all
optimization options in OpenMPC that are considered for individual optimiza-
tion analysis. The first three groups are supported by our CUDA extensions. The
fourth group is applied through source-to-source transformation in the Open-
MPC compiler.

2.2 Improving the OpenMPC Tuning System

To analyze the effects of individual tuning options, we make use of the OpenMPC
system, which allows us to implement the method in [2]: Using the highest-
optimized program variant as a baseline, this method iteratively switches off one
optimization at a time, to measure its effect in terms of the slowdown incurred.
To this end, we have identified a number of open issues in OpenMPC, which we
address in the present work.

Advanced Optimization Space Navigation: The goal of an empirical tun-
ing system is to generate a set of optimizations that yield best performance. In
OpenMPC, 18 optimizations are available as compiler flags. Finding the best
combination from these flags is non-trivial, because each optimization can im-
prove or worsen the performance of a program, depending upon its characteristic
and depending on other present optimizations.

The initial OpenMPC system uses simple exhaustive search to navigate the
space of optimization variants. This space can be very large (for n on-off opti-
mization options, the size is 2n). OpenMPC reduces this space using aggressive
tuning heuristics, which we refer to as pruned exponential search (PE). PE does
the program analysis to prune the tuning space by removing the inapplicable
or non-beneficial tuning options for the particular program. It then runs ex-
haustive search over the remaining tuning options. However, two issues remain:
The resulting search space can still be large (which was acceptable for obtaining
the original research results [1], but can be too long for end users). In addition,
sometimes the aggressive pruning heuristics may eliminate the best optimization
combination.

Runtime Variations – A Key Problem of Auto-Tuning Systems: In
computer systems, unpredictable system variations during program execution
are usual. They arise due to OS overheads, other running processes, or underlying
hardware operations. Although these variations do not affect the correctness
of the program, they can impact its execution time. We define this type of
variation as runtime variation. Although runtime variation does not disrupt
program execution, in auto-tuning system, runtime variation can be problematic.
Since the auto-tuning systems improves the program based on execution time,

5

Table 1. Optimization options in OpenMPC

Program Environment Configuration

Compiler Flags Description

cudaThreadBlockSize=N Set the default CUDA thread block size

assumeNonZeroTripLoops Assume that all loops have non-zero iterations

Data Caching Strategy

Compiler Flags Description

shrdSclrCachingOnReg Cache shared scalar variables onto GPU register

shrdArryElmtCachingOnReg Cache shared array elements onto GPU register

shrdSclrCachingOnSM Cache shared scalar variables onto GPU shared memory

prvtArryCachingOnSM Cache private array variables onto GPU shared memory

shrdArryCachingOnTM Cache 1-dimensional, R/O shared array variables onto
GPU texture memory

shrdSclrCachingOnConst Cache R/O shared scalar variables onto GPU constant
memory

shrdArryCachingOnConst Cache R/O shared array variables onto GPU constant
memory

Data Offloading Optimization

Compiler Flags Description

useMallocPitch Use cudaMallocPitch() for 2-dimensional arrays

useGlobalGMalloc Allocate GPU variables as global variables
which provides more scope for reducing memory trans-
fers

globalGMallocOpt Apply CUDA malloc optimization for globally allocated
GPU variables

cudaMallocOptLevel=N Set CUDA malloc optimization level for locally allo-
cated GPU variables

cudaMemTrOptLevel=N Set CUDA CPU-GPU memory transfer optimization
level

Code Transformation

Compiler Flags Description

localRedVarConf=N Configure how local reduction variables are generated
for array-type variables

useMatrixTranspose Apply Matrix Transpose optimization

useParallelLoopSwap Apply Parallel Loop Swap optimization

useUnrollingOnReduction Apply Loop Unrolling for in-block reduction

the variation can cause some beneficial optimizations to be removed from the
tuning result and vice versa.

One of the significant observations made during our study was the fact that
most of the variations on GPU programs are due to the variations in memory
transfer times. Since GPU and CPU do not share a common address space,
memory transfers form an essential part of GPU programs. GPUs are generally

6

connected to the CPU using a PCIe bus, thereby leading to a variability in
the memory transfer times. Table 2 compares the relative standard deviation in
computation time and the memory transfer time. Relative standard deviation
is a percentage of the ratio of standard deviation to the mean of the sample. It
acts as an indicator as of how the variations relate to the average. From Table 2,
we can see that the relative standard deviations in memory transfer can be as
much as 7000 times the relative standard deviations in computation time.

Table 2. Variations on GPU Programs

Benchmark Relative Standard Deviation Relative Standard Deviation Ratio
for Memory Transfer Time (A) for Computation Time (B) (A/B)

NW (8192) 0.2395 0.0128 18.71

Jacobi (12288) 0.7394 0.0001 7394

CG (W) 0.2562 0.0706 3.63

FT (W) 0.1521 0.0112 13.58

To alleviate runtime variations, one can average execution times across multi-
ple runs. However, multiple executions can increase the tuning time significantly.
The PE algorithm does not take runtime variations into consideration, and there-
fore is more prone to erroneous final option combinations on GPU programs.

Objectives of this Work: Our goal is to determine the impact of individual
optimization techniques in the OpenMP to CUDA translator. To this end, we
use the improved OpenMPC translation and tuning system, which can find the
best combination of optimization techniques for each program. In doing so, it
also reports the performance difference made by individual optimizations. We
proceed as follows.

– We modify a previously described Iterative Elimination (IE) [3] tuning al-
gorithm to make it applicable to GPU programs.

– We describe a generic tuning methodology to deal with memory transfer
time based variations of GPU applications.

– With the best tuning option combination generated by the above tuning
system, we analyze the impact of each tuning option or compiler flag.

The next section presents the new tuning algorithm. Section 4 presents results
obtained using this methodology.

3 Modified IE (MIE) Algorithm for OpenMPC

To address the issues presented in Section 2.2, we propose a Modified IE (MIE)
algorithm, which is a tuning algorithm based on Iterative Elimination (IE) [3].
In this section, we briefly describe IE and then present our MIE algorithm.

7

3.1 Iterative Elimination

The IE algorithm is shown in Algorithm 1. IE begins by switching on all opti-
mization options, and then iteratively measures their effect by switching off one
tuning option at a time. Next, it removes the one with the most negative effect.
The process repeats until all remaining optimizations show non-negative effects.
The complexity of IE is O(n2), compared to O(2n) of the PE algorithm.

Algorithm 1 Iterative Elimination Algorithm

Require: n = Number of Tuning Options (F1, F2, ... Fn)
Ensure: B = {F1 = 1, F2 = 1, ..., Fn = 1} B is a set of combination options

i← 1; NextB ← B; . NextB stores the fastest combination in every iteration
for i = 1→ n do

for j = 1→ n do
if Fj 6= 0 then

NextB = min(NextB, B with Fj = 0); . Compares the runtimes
end if

end for . Termination: No Fi has changed from 1 to 0
if NextB = B then

break; . None of the switched on options has a negative impact
end if
B ← NextB; . Start next iteration with a new baseline NextB

end for . Creates set of best tuning options e.g B = {F1 = 1, F2 = 0, ., Fn = 1}

Another tuning method, Combined Elimination (CE) [3] performs the option
removal in a more aggressive fashion, under the assumption that some interfer-
ences between options are negligible. The tuning time of CE is known to be
shorter than IE. However, since the performance of IE is known to be the best
amongst the available tuning algorithms [3], we chose IE as our base algorithm.
Other algorithms could be adapted in place of IE in our system [4, 5]. Unlike the
work in [6], which uses optimal ordering of compiler flags, IE tries to find the
best tuning options set, irrespective of the order.

3.2 Grouping of different Optimization Options

To deal with the problem of runtime variations, a direct implementation of IE
would require multiple runs and averaging before eliminating an optimization
option. This would lead to high tuning times, because the runtime variations of
GPU programs can be large.

Comparing only the computation runtime instead of the total execution time
can eliminate the effect of memory transfer variations on tuning. To achieve that,
the behavior of memory transfers must be the same between two comparable can-
didate combinations of IE. If this invariant is maintained, the memory transfer
time can be subtracted from total execution time (e.g., by obtaining these times
from available hardware profilers) an optimization technique is evaluated by IE.

An intuitive strategy would be to apply techniques that affect memory trans-
fers (i.e. data offloading optimizations shown in Table 1) in a first tuning phase,

8

averaging the results over multiple runs. In a second phase, the remaining opti-
mization options are tuned, whereby transfer times are removed from execution
times. In this way, most of the runtime variations in the GPU program can be
filtered out; a single run suffices.

The split into the two phases is beneficial only when the data offloading opti-
mizations do not interfere with other. That is not always the case. For example,
useMallocPitch, which manages 2D array allocation and transfer, may or may
not be beneficial depending on the stride of 2D array accesses. Since usePar-
allelLoopSwap transforms the array accesses in the code, useMallocPitch may
improve performance if useParallelLoopSwap is applied.

To address this problem, MIE uses a third phase, in which memory transfer
optimizations that are affected by computation optimization options are placed.
This phase also averages runtimes over multiple runs. In a fourth phase, MIE
tunes separately those optimizations that do not interact with others. It uses a
simple, fast tuning algorithm for this phase.

Phase 1 contains all memory transfer-based (data offloading) optimizations,
except useMallocPitch. Phase 2 contains program environment configuration
and code transformation options that impact the computation. Phase 3 con-
tains dependent optimizations. With the currently available tuning options in
OpenMPC, Phase 3 contains only useMallocPitch. This technique impacts the
data offloading (memory transfers), but is dependent upon computation tech-
nique useParallelLoopSwap. Phase 4 contains data caching optimizations. They
are independent of the techniques in the other groups.

Table 3. Grouping of OpenMPC Options for Tuning (MemTR = Memory Trans-
fer Optimization, Comp = Computation Optimization). Options in paranthesis imply
multi-values options

Phase Type Tuning Options

1 MemTR useGlobalGMalloc, globalGMallocOpt,
cudaMallocOptLevel=1, cudaMemTrOptLevel=2

2 Comp useUnrollingOnReduction, useLoopCollapse,
useMatrixTranspose, useParallelLoopSwap,

prvtArryCachingOnSM, localRedVarConf=0,
assumeNonZeroTripLoops

3 Dependent useMallocPitch

4 Independent ArrayCache = {shrdArryElmtCachingOnReg,
shrdArryCachingOnTM, shrdArryCachingOnConst}

ScalarCache = {shrdSclrCachingOnReg,
shrdSclrCachingOnSM, shrdSclrCachingOnConst}

3.3 MIE Running Strategy

With the above groups of optimizations in place, we now describe the MIE run
strategy.

9

1. Data Offload Optimizations: First the algorithm runs IE with the Phase 1
optimizations as the input set. Since these options all impact memory trans-
fers, they are vulnerable to high runtime variations. The MIE algorithm runs
each IE stage multiple times and considers the average execution times for
making elimination decisions.

2. Computation Optimizations: The configuration formed in Phase 1 is the
baseline configuration. MIE now appends Phase 2 options to this configura-
tion and runs IE over all new options. While making comparisons between
two combinations, the memory transfer time is removed from the compar-
ison, effectively considering only the computation time. This helps reduce
the effect of variations to a large extent. This stage requires calculation of
the time spent in copying the data between CPU and GPU memories. This
is accomplished by using the CUDA profiler. Using this method, MIE avoids
averaging over multiple runs, substantially reducing the time required.

3. Dependent Optimizations: In the combination formed after Phase 2, MIE
includes Phase 3 option i.e. useMallocPitch and averages the runtimes over
multiple executions to see if this option is beneficial and should be included.
(Should there be more tuning options added in Phase 3, MIE would run IE
on this group, with averaging runtimes over multiple executions.)

4. Independent Optimizations: Since this group does not depend upon
other options, MIE iteratively runs each Phase 4 option on top of the con-
figuration formed in Phase 3, and adds the best value of each multi-valued
option to the final optimization configuration.

4 Performance Analysis

4.1 Setup

We ran both the PE and the MIE algorithm on NVIDIA Quadro FX 5600 GPU
device, which has 16 multiprocessors (SMs) clocked at 1.35GHz and 1.5 GB of
memory. Each SM consists of 8 SIMD processing units (SPs) and has 16 KB of
shared memory. The host CPU is a 3-GHz AMD dual-core processor with 12
GB memory. The OpenMPC generated CUDA programs were compiled using
the NVIDIA CUDA Compiler (NVCC) with option -O3.

We demonstrate the effectiveness of our tuning system on NAS OpenMP
Parallel benchmarks, Rodinia OpenMP benchmarks and some scientific compu-
tation applications. As described in 3.3, we run Phase 1 and Phase 3 options 5
times each and use the average runtimes for IE. For other groups, we compare
only the computation times for IE runs.

4.2 Performance Comparison Between Pruned Exhaustive and
Modified IE Algorithms

To evaluate the performance of the MIE algorithm, we show in Figure 3 the
speedup of benchmarks achieved with MIE, normalized with respect to the PE

10

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

Jac
ob
i	 (2
04
8)	

Jac
ob
i	 (4
09
6)	

Jac
ob
i	 (8
19
2)	

Jac
ob
i	 (1
22
88
)	

Ho
tsp
ot	
(64
)	

Ho
tsp
ot	
(51
2)	

Ho
tsp
ot	
(10
24
)	

NW
	 (2
04
8)	

NW
	 (4
09
6)	

NW
	 (8
19
2)	

EP
	 (W
)	

BF
S	

SP
MU

L	

FT
	 (S
)	

CG
	 (S
)	

CF
D	

LU
D	 (
20
48
)	

LU
D	 (
51
2)	

Re
la
%v

e	
sp
ee
du

p	

Benchmarks	

Fig. 3. Program Speedups of Modified IE relative to Pruned Exhaustive Algorithm

algorithm. MIE performs better than the PE algorithm in most of the cases,
averaging to a 11% performance improvement over PE. In fact, MIE outperforms
Pruned Exhaustive method substantially for the Hotspot and LUD benchmarks.
This effect is due to the over-pruning occurring in the PE method, thereby
missing out on the best option combination.

Another important observation is the fact that MIE performs marginally
better (2 to 5 %) compared to Pruned Exhaustive method on most other pro-
grams where over-pruning does not happen. This is counter-intuitive since PE
is expected to search through all possible choices. It is explained due to the ex-
cessive memory transfer based variations, wherein the best option combination
produced by the Pruned Exhaustive method may not be the optimal, rather it
is the one that suffered the least.

Table 4 compares the tuning time required by the Pruned Exhaustive algo-
rithm against the tuning time required by the MIE algorithm. The advantage of
IE in terms of tuning time is evident from this table.

Table 4. Tuning Time Comparison of Pruned Exhaustive Vs. Modified IE Algorithm

Benchmark Tuning Time (mins)
Pruned Exhaustive Tuning Modified IE Tuning

SRAD 538 23

FT (S) 2345 23

CG (S) 1108 17

CFD (97k) 1083 210

FT (A) 3680 97

Jacobi (12288) 98 55

11

Benchmarks:	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

useMatrixTranspose	 useParallelLoopSwap	 useUnrollingOnReducFon	

sp
ee
du

p	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

shrdSclrCachingOnConst	 shrdSclrCachingOnReg	 shrdSclrCachingOnSM	

sp
ee
du

p	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

prvtArryCachingOnSM	 shrdArryCachingOnConst	 shrdArryCachingOnTM	 shrdArryElmtCachingOnReg	

sp
ee
du

p	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

cudaMallocOptLevel=1	 cudaMemTrOptLevel=2	 globalGMallocOpt	 useGlobalGMalloc	

sp
ee
du

p	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

useMallocPitch	 assumeNonZeroTripLoops	 cudaThreadBlockSize	 localRedVarConf=0	

sp
ee
du

p	

Fig. 4. Individual impacts of the 18 optimizations. Bars show normalized performance
of the benchmarks after disabling the selected optimization. A large drop in perfor-
mance indicates high impact.

12

4.3 Impact of Individual Optimization Options

As stated earlier, to analyze the effect of individual tuning options in OpenMPC,
we follow the method from [2], wherein we turn off one optimization at a time
from the best tuning options set, so as to understand the effects of the individual
optimization in terms of the slowdown incurred. The bigger the slowdown, the
larger is the benefit of the optimization. We analyze the results in Fig 4 with
respect to the techniques shown in Table 1.

Some benchmarks like SRAD, Jacobi, SPMUL depict high benefits obtained
due to compiler techniques. However, some others like Backprop show relatively
small effects. The effectiveness of our Modified IE tuning algorithm can be
gauged from the observation that switching off an individual technique with
respect to the best tuning optimization set has never improved the performance
beyond 3%, which can be attributed to the computation variations.

Memory transfer optimization-based techniques show high impact on many
GPU programs. Similarly, the techniques that change data access strides can be
highly beneficial since they help coalesce memory accesses. useParallelLoopSwap
and useMatrixTranspose are some such techniques.

Exploiting GPU specific memories for caching both the scalar and array vari-
ables can be highly beneficial. GPUs have on-chip cache and shared memories
and off-chip constant and texture memories. The current OpenMPC setup tries
to put all the variables (either scalar or arrays) on one of these memories, de-
pending upon the tuning option provided. However, since these memories may
not be large enough to hold the complete data sets, the compilation of such
programs may fail (in which case the current tuning system ignores the option).
We foresee a methodology to adaptively exploit all the GPU specific memories.

5 Conclusion and Future Work

We have analyzed the performance of GPU optimization techniques present in
the OpenMPC translation and tuning system. Our main findings indicate that
the compiler engineer who wishes to translate a program in a given language
into a CUDA program should consider the following optimizations:

1. Memory transfer optimization-based techniques are essential for offloading-
based programming models.

2. Exploiting special memories on GPUs can yield significant speedups.

3. Transformations that change the memory access strides are of great impor-
tance in GPU programs.

4. Tuning is important. With its help, standard OpenMP programs can be
translated effectively and efficiently into CUDA/GPU code.

5. Explicit GPU programming (without tuning support) needs to make use of
CUDA-extensions (above items 1, 2) for best performance. It is important for
emerging standards, such as OpenMP (3.1) [7] and OpenACC [8] to support

13

these features. Above items 1 and 3 should be applicable to a wide range of
accelerators. Item 2, however, is CUDA specific, but is necessary to obtain
best performance.

We also proposed a new empirical tuning algorithm for GPU programs called
Modified IE (MIE), which significantly reduces tuning time. MIE addresses and
is able to tolerate runtime variations caused by memory transfer between GPU
and CPU. As a result, MIE performs 11% better, on average, than the original
OpenMPC tuning system [1], while maintaining polynomial tuning time.

Ongoing work: The presented analysis of different techniques has provided
us with intuitions as of what kind of compiler techniques are useful on GPUs.
We did not implement some of the unsafe options [1] in MIE, the application
of which may provide larger benefits. We plan to extend the tuning system into
automatically incorporating such options, with the programmer’s help in under-
standing correctness of the output. Furthermore, best performance is achieved by
inserting certain CUDA-extension directives in the OpenMP source program [1].
Our ongoing work includes the extension of the translation and tuning system
to automate these modifications as well.

References

1. Lee, S., Eigenmann, R.: Openmpc: Extended openmp programming and tuning for
gpus. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’10, Washington,
DC, USA, IEEE Computer Society (2010) 1–11

2. Blume, W., Eigenmann, R.: Performance analysis of parallelizing compilers on
the perfect benchmarks programs. IEEE Transactions on Parallel and Distributed
Systems 3 (1992) 643–656

3. Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: Proceedings of the International Symposium
on Code Generation and Optimization. CGO ’06, Washington, DC, USA, IEEE
Computer Society (2006) 319–332

4. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization.
CGO ’03, Washington, DC, USA, IEEE Computer Society (2003) 204–215

5. Pinkers, R.P.J., Knijnenburg, P.M.W., Haneda, M., Wijshoff, H.A.G.: Statistical
selection of compiler options. In: Proceedings of the The IEEE Computer Soci-
ety’s 12th Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems. MASCOTS ’04, Washington, DC,
USA, IEEE Computer Society (2004) 494–501

6. Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing compilers for the
21st century. J. Supercomput. 23 (August 2002) 7–22

7. OpenMP 3.1: Openmp 3.1 released. http://openmp.org/wp/openmp-31-released/
(July 2011)

8. OpenACC. http://www.openacc-standard.org/ (November 2011)

