
HYDRA : Extending Shared Address
Programming For Accelerator Clusters

Putt Sakdhnagool, Amit Sabne, and Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University

Abstract. This work extends shared address programming to accelera-
tor clusters by pursuing a simple form of shared-address programming,
named HYDRA, where the programmer only specifies the parallel re-
gions in the program. We present a fully automatic translation system
that generates an MPI + accelerator program from a HYDRA program.
Our mechanism ensures scalability of the generated program by opti-
mizing data placement and transfer to and from the limited, discrete
memories of accelerator devices. We also present a compiler design built
on a high-level IR to support multiple accelerator architectures. Eval-
uation results demonstrate the scalability of the translated programs
on five well-known benchmarks. On average, HYDRA gains a 24.54x
speedup over single-accelerator performance when running on a 64-node
Intel Xeon Phi cluster and a 27.56x speedup when running on a 64-node
NVIDIA GPU cluster.

1 Introduction

The last decade has seen a steady rise in the use of accelerators towards high-
performance computing. Many supercomputers rely on devices such as NVIDIA
or AMD GPUs and Intel Xeon Phis to accelerate compute-intensive workloads.
Various programming models and frameworks [8, 14] have so far been proposed
to effectively use accelerators on individual compute nodes. As the productivity
of these frameworks has risen over the years, there is growing interest in pro-
gramming systems that can efficiently use accelerators on all nodes of a cluster.

Writing a program to exploit CPU clusters in itself is a tedious and error-
prone task. The need for accelerator programming adds further to this difficulty,
as the involved programming models differ substantially from those of common
CPUs. To achieve greater productivity, high-level programming models for ac-
celerator clusters are needed.

In response to such requirements, this paper presents compiler and runtime
techniques required for a shared address programming model for accelerator
clusters. In our research, we pursue a simple model, called HYDRA, where pro-
grammers only specify parallel regions and shared data in the program. From
our observation, most parallel applications in well-known benchmark suites, such
as Rodinia [4], can be implemented using only this construct. To demonstrate
the effectiveness of our techniques, we developed a source-to-source translation



system that converts a HYDRA program into an MPI + accelerator program
(referred to as accelerated MPI program hereafter).

There are two important performance factors for accelerator cluster pro-
grams: single-accelerator speed and scalability across nodes. Researchers have
previously proposed advanced techniques for generating optimized single-
accelerator code from shared address programs [8, 14]. By contrast, this paper
focuses on the scalability aspect, which is crucial, as large clusters are expected
to efficiently process increasingly large problem sizes. Optimization techniques
for single accelerators are insufficient. Realizing shared address programming
with high scalability on accelerator clusters poses the following three challenges.
These challenges do not exist on CPU clusters. Their solution represent the
specific contributions of this paper.

1. The first challenge comes from the fact that, unliked CPUs, current ac-
celerators have discrete and limited memories. Full data allocation of today’s
typical problem sizes on accelerator memories could exceed available capacities.
This limitation would result in failure of single-accelerator execution and an in-
ability to scale to multiple nodes. Programmers of accelerated MPI code avoid
this problem by allocating only the part of the data accessed by each process of a
distributed program. By contrast, shared address programming hides the access
distribution from programmers and, instead, relies on the compiler or runtime
support to extract such information. The distribution of the data accesses is
related to the partitioning of the program computation. The system must be
aware of such partitioning to precisely allocate memory on accelerators. With-
out advanced analysis, a compiler may allocate the entire shared data on the
accelerator memory, which could result in the said failure. Our first contribution
overcomes this issue by introducing a precise compile-time memory allocation
method.

2. A second critical issue is related to the data transfer between accelerator
and host memory. Minimizing this transfer is critical for scalability. The challenge
lies in the single machine image of the shared address space, where programmers
do not specify data movements between CPU and accelerator memories. The
compiler, having to derive such transfer from the program, might send entire
shared data structures to/from accelerator memory, introducing excessive over-
head. Our second contribution introduces a compile-time solution to minimize
such transfers.

3. Both proposed techniques are architecture-agnostic. We show results on
two common accelerators: NVIDIA’s GPUs and Intel Xeon Phis (referred to as
MIC hereafter). Our compiler design includes support for multiple architectures.
Our third contribution lies in this design, which separates passes that are com-
mon across architectures and specialized passes for the target architectures. The
compiler takes HYDRA programs as input, and translates them into acceler-
ated MPI programs, using CUDA or OpenCL, depending upon the underlying
architecture.

We demonstrate the efficacy of the proposed techniques by experiment-
ing with five common applications on two clusters of 64 nodes each; one has



NVIDIA GPUs, the other has Intel MICs. The speedup against optimized single-
accelerator performance is as high as 43.81x on a 64-node GPU cluster and 45.18x
on a MIC cluster.

The remainder of this paper is organized as follows. Section 2 describes the
baseline system on which HYDRA is built. Section 3 discusses the requirements
for the translation and our solutions. Section 4 describes the implementation of
the HYDRA translation system. Section 5 presents experimental results on five
benchmarks. We discuss related work in Section 6 and present conclusions in
Section 7.

2 Background

2.1 OMPD Baseline System

Our work builds on the OMPD [10] hybrid compiler-runtime system, which en-
ables OpenMP programs to utilize nodes of a distributed system.

The compiler is responsible to partition the program computation and to
perform the static part of the communication analysis.The compilation process
of OMPD consists of two phases: (1) program partitioning and (2) static com-
munication analysis. In program partitioning, the compiler divides the program
into sections, referred to as program blocks, each containing either serial code or a
parallel loop. The serial program blocks are replicated across processes while the
parallel blocks are work-shared. The parallel loop’s iterations are partitioned and
distributed across MPI processes. A barrier is placed at the end of each program
block, representing a potential communication point. The static communication
analysis performs array data flow analysis, described in Section 2.2, determining
local uses and local definitions of each program block. The compiler transfers
this information to the runtime system for complete communication analysis.

All inter-node communication is generated and executed at runtime. At each
barrier, the runtime system analyzes global uses, which determines future uses of
all data at any needed communication point. The communication messages are
determined by intersecting local definitions and global uses. The runtime system
uses this information to schedule communication and generate MPI messages.

2.2 Array Data Flow Analysis

Array data flow analysis [11] enables the compiler to analyze the precise producer
and consumer relationships between program blocks. The result of the analysis
is a set of local uses and local definitions of each program block, at each barrier
in the program. Every process will have its own local definitions and local uses.
For shared array A at barrier i, the local use is denoted by LUSEA

i and local
definition by LDEFA

i , defined as

LUSEA
i = {useA(i,j)|1 ≤ j ≤ n} (1)

LDEFA
i = {defA

(i,k)|1 ≤ k ≤ m} (2)



where each use represents a read access of array A in the program block after
barrier i and each def represents a write access of array A in the program block
before barrier i. n and m are the number of read accesses in the program block
after barrier i and the number of write accesses in the program block before
barrier i of array A, respectively. For a p-dimensional array A, each use and def
is defined as a pair of lower bound and upper bound accesses in each dimension
of the array. For dimension d, the lower and upper bound are represented as
[lbd : ubd]. An example of use and def for a p-dimensional array is as follows

useA(i,j) = [lbp−1 : ubp−1]...[lb1 : ub1][lb0 : ub0]

defA
(i,j) = [lbp−1 : ubp−1]...[lb1 : ub1][lb0 : ub0]

We extend this array data flow analysis framework for the new optimizations
described in Section 3.

3 Extending Shared Address Programming Beyond CPU
Clusters

Extending CPU-based shared address programming to support accelerator clus-
ters poses a number of challenges. While the model is convenient for users, the
programs abstraction hides information that is relevant for the translator. Thus,
the compiler needs sophisticated techniques to extract this information. The
need for such techniques is critical in our HYDRA programming model, as pro-
grammers only specify parallel regions and do not include such information as
data transfer and communication. Section 3.1 describes the model in more detail.

Our techniques deal with the fact that accelerators are independent compu-
tational components with separate address spaces, reduced memory capacities,
and diverse architectures. Section 3.2 explains these threee challenges in more
detail and presents our solutions.

3.1 HYDRA Programming Model

HYDRA is a directive-based shared address programming model offering a single
parallel loop construct

#pragma hydra parallel for [clauses]

The clauses are syntactically optional but might be needed for program seman-
tics. Table 1 lists all available clauses for the HYDRA parallel loop directive.
The shared, private, and firstprivate clauses specify characteristics of vari-
ables. Variables not listed explicitly are shared by default. The reduction clause
indicates that the annotated loop performs a reduction operation on variables
in varlist using operator op.

Despite HYDRA’s simplicity, many parallel applications can be implemented
using only this single HYDRA construct. All of our evaluation benchmarks were
available in the form of OpenMP programs. We generated HYDRA versions by



Table 1. Parallel Loop Directive Clauses

Clause Format Description

shared shared(varlist) List of shared variables.

private private(varlist) List of private variables.

firstprivate firstprivate(varlist) List of private variables, whose value must be
initiated before the start of the parallel loop.

reduction reduction(op:varlist) List of variables to perform reduction with op-
erator op.

a simple, syntactic translation. We chose HYDRA instead of available models,
such as OpenACC and OpenMP, for research purposed, which are to explore
the concepts of the translation and the generic characteristic of shared-address
models.

3.2 Compiler Analyses for Accelerator Data Management

In distributed programming, the computation is partitioned and distributed
across processes. The programmer is responsible for doing so. HYDRA instead
holds the underlying compiler and runtime responsible for these tasks. Program-
mers do not need to express any information about access ranges of shared data.

The lack of such information may tell the compiler that each process is ac-
cessing the entire data, although in reality, only a portion of the data is being
accessed. This problem is not critical in CPU clusters because of large physical
memory space and virtual address systems; however, accelerator memory is much
smaller and does not have a virtual memory system. As the typical problem sizes
used on clusters are much larger than a single accelerator’s memory, allocating
the entire data required by the computation on each accelerator would result
in program failure due to insufficient memory. Even if the data fits in the ac-
celerator memory, another issue would arise: accelerator memory is discrete and
input data must be transferred to it before being used. Transferring the entire
data would introduce excessive overhead. Therefore, data access information is
crucial to the scalability of accelerator cluster programs.

Data Transfer Analysis To minimize data transfers, a compiler analysis must
precisely identify the data accessed by each program block. The precise access
information can be identified by the union of read and write sections of live
data. The details of the analysis are as follows: The first part of our data transfer
analysis identifies the shared data that are live-in and live-out of a given program
block executing on the accelerators, Bi. This information can be derived from
the LUSE information, generated by the array data flow analysis described in
Section 2.2.

Let Bri denote the barrier before Bi, Brf denote the future barriers that
the program will reach after Bi, and ShareV ar(Bi) denote the set of shared
variables accessed in the program block Bi. Let A ∈ ShareV ar(Bi). If there
exists LUSEA

Bri
, array A will be used in Bi and a data transfer from host to

accelerator is required. On the other hand, if there exists LUSEA
Brf

array A will
be used in the future, requiring a data transfer from accelerator to host.



If it is determined that a data transfer is required for an array A at bar-
rier Bri, the next step is to identify the section of array A that will be trans-
ferred. The required section of an array A on each dimension can be obtained
as [lbmin,Bri : ubmax,Bri ] where lbmin,Bri is the minimum lower bound of all
local accesses of array A and ubmax,Bri is the maximum upper bound of all local
accesses of array A at barrier Bri in that dimension. Note that the upper and
lower bounds can be symbolic expressions. The analysis obtains lbmin,Bri and
ubmax,Bri by using the symbolic analysis capabilities of Cetus [1].

Memory Allocation Optimization Memory allocation/deallocation could be
done at the beginning/end of each kernel, based on the data size computed for
the transfer. However, as the same array may be accessed in multiple kernels, one
can do better. Our method performs global analysis to summarize all accesses
of the shared array in the program and allocates/deallocates only once, saving
costs and improving re-use of the allocated memory. There is a small sacrifice
in precision, in terms of the memory size allocated, which however is always
conservatively larger. Such sacrifice does not affect the correctness of the program
and is outweighed by the saved costs of repeated allocation and possible re-
transfer of data.

The optimization is based upon global array dataflow analysis for precise ar-
ray sections. The implementation also makes use of the advanced array dataflow
framework and symbolic analysis capabilities available in the Cetus compiler in-
frastructure. The memory space requirement of an array A is extracted from the
union of LDEFA and LUSEA, where LUSEA represents all read accesses and
LDEFA represents all write accesses of an array A in the program. LDEFA

is the union of all LUSEA
Bri

and LDEFA is the union of all LDEFA
Bri

in the

program. Thus, LUSEA ∪LDEF a represents all accesses of array a in the pro-
gram. The memory requirement for each dimension of the array can be defined
as [lbmin : ubmax] where lbmin ∈ (LUSEA ∪ LDEFA) is the minimum lower
bound of all accesses of array A and ubmax ∈ (LUSEA ∪ LDEFA) is the maxi-
mum upper bound of all accesses of array A. [lbmin : ubmax] indicates the bounds
of any access to array A in the local process. Thus, it also defines the memory
allocation for array A. The size of the new array is different from the original.
The compiler must incorporate this change into all accesses of the new array by
subtracting lbmin from all indices. The size and offset information is also utilized
while generating the data transfers.

The analysis does not require array sections to be contiguous and can sup-
port arrays with any number of dimensions. In our current implementation, if
the analysis results in multiple array sections, the algorithm will conservatively
merge them together. Further analysis can be done to determine whether the
sections should be merged or not, which we leave to future work.

4 Translation System Implementation

The HYDRA translation system consists of a compiler and a runtime system.
The compiler performs source-to-source translation to generate accelerated MPI



Fig. 1. HYDRA Compiler Translation Process: Grey boxes represent the new passes
in the HYDRA compiler.

code from input HYDRA programs. Section 4.1 explains the compiler design
to support multiple accelerator architectures. Section 4.2 presents the overall
translation process of the HYDRA compiler. The HYDRA runtime system is re-
sponsible for remote accelerator-to-accelerator communication in the compiler-
translated, accelerated MPI programs. The implementation of the runtime sys-
tem is described in Section 4.3.

4.1 Supporting Multiple Accelerator Architectures

To support a wide-range of accelerator clusters, the compiler must be able to
target different accelerator architectures. This requirement poses a challenge to
the compiler design as different architectures have different features, some of
which are common while others are unique to the specific architecture.

In the HYDRA compiler, most compilation passes are architecture-agnostic
with no specialization needed. The design defers specialization to as late as
possible in the translation process. In this way, only the last compilation pass of
code generation is architecture specific. The key to realizing such design is the
internal representation (IR).

From our observation the following four operations are sufficient to express
any accelerator program : (1) Memory Allocation, (2) Data Transfer, (3) Accel-
erator Kernel Execution, and (4) Memory Deallocation. By using these opera-
tions as IR constructs, the compiler can represent programs in an architecture-
independent form. To generate architecture-specific code, the compiler con-
verts architecture-independent constructs to their architecture-specific equiva-
lents during the code generation pass.

4.2 HYDRA Translation Process

Fig. 1 shows the overall translation process from the input HYDRA program to
the accelerated MPI program. Accelerator extensions are highlighted using grey
boxes. The dashed boxes represent existing CPU passes.

The compilation process starts with the CPU passes, which perform work
partitioning and array dataflow analysis. The partitioned program is then passed
to HYDRA’s accelerator extension. The passes in the extension perform acceler-
ator kernel generation, memory transfer analysis, memory allocation optimiza-
tion and further architecture-independent optimization (e.g. hoisting memory
transfers, prefetching, etc.). After the accelerator code is added, the compiler



analyzes and adds communication code to the program. The compilation pro-
cess completes with the code generation pass, which produces the accelerated
MPI program with accelerator kernels specific to the target architecture.

The current implementation of the HYDRA compiler supports two accel-
erator types: NVIDIA CUDA GPUs and Intel MIC. As target languages, we
choose CUDA for NVIDIA GPUs and OpenCL for Intel MICs. One might argue
that different architectures could be supported by using OpenCL as the target
language for all accelerator architectures; the compiler just needs to generate
OpenCL + MPI programs, allowing the generated code to run on any accelera-
tor cluster. However, OpenCL does not support accelerator-specific features, e.g.
using warp-level functions in CUDA. Thus, the translated code cannot fully uti-
lize the accelerator capabilities. Further, some architectures have limited support
for OpenCL features [6].

The HYDRA compiler faces similar limitations as the baseline OMPD sys-
tem: irregular programs are handled inefficiently for lack of compile-time infor-
mation about data accesses. Such accesses may lead to conservative memory
allocations and data transfers.

4.3 HYDRA Runtime System

The HYDRA runtime system is responsible for remote accelerator communica-
tion. In contrast to CPUs, accelerators cannot directly perform remote communi-
cation. The communication must be handled by the host CPU. Thus, additional
data transfer between host and accelerator memories is required before and after
the communication. We refer to such data transfer as message relay.

We designed a new runtime extension (ACC-RT), whose interaction with the
host-side runtime system (HOST-RT) enables remote accelerator communica-
tion. The HOST-RT system is responsible for generating communication mes-
sages and executing host-to-host communication, while the ACC-RT system is
responsible for managing host-accelerator data mapping and message relays. The
ACC-RT system uses communication information from the HOST-RT system to
generate message relays. The transfers are computed from the communication
messages generated by the HOST-RT system, and the mapping information pro-
vided by the HYDRA compiler. A runtime interface is designed for the compiler
to provide mapping information between host and accelerator data. The map-
ping information includes the host address, accelerator address, accelerator data
size, and accelerator data offset. The accelerator offset is necessary in order to
align accelerator and host data. The overhead of the ACC-RT system is negligi-
ble. In our experiments, we found this overhead to be less than 0.1% of the total
execution time on 64-node accelerator clusters.

5 Evaluation

This section evaluates the effectiveness of the proposed techniques on two accel-
erator clusters, one with NVIDIA GPUs and another with Intel MICs.



Table 2. Experimental Setup for Strong Scaling

Benchmark class-A Problem Size class-B Problem Size Number of Iterations

Jacobi 20000 × 20000 24000 × 24000 1000

Heat3D 768 × 768 × 768 800 × 800 × 800 1000

Blackscholes 67,000,000 options 400,000,000 options 1000

Bilateral Filter 12280 × 12280 20000 × 20000 1

Filterbank 67,000,000 134,000,000 32

5.1 Experimental Setup

We used the Keeneland cluster [20] to evaluate the GPU versions of the HYDRA
programs. Keeneland consists of 264 compute nodes, connected by an FDR In-
finiband network. Each node has two 8-core Xeon E5-2670 running at 2.6 Ghz,
32GB of main memory, and three NVIDIA Tesla M2090 GPUs. Each GPU has 6
GB of device memory available for computation. We evaluated the MIC program
versions on a community cluster, where each node contains two 8-core Xeon E5-
2670 CPUs, 64 GB of main memory, and two Intel Xeon Phi P5110 accelerators.
Each Xeon Phi has 6 GB of device memory available for computation. The nodes
are connected by an FDR-10 Infiniband network. Our evaluation uses up to 64
nodes with one MPI process and one accelerator per node.

We present the results for five representative benchmarks: Bilateral Filter,
Blackscholes, Filterbank, Jacobi, and Heat3D. Bilateral Filter and Blackscholes
are from the NVIDIA CUDA SDK. The benchmarks are implemented in HY-
DRA by converting their OpenMP counterparts. Bilateral Filter is a non-linear
and edge-preserving filter used for noise reduction and image recovery. It uses a
weighted average of intensity values from nearby pixels to update the intensity
value of each individual image pixel. Blackscholes is a financial formula to com-
pute the fair call and put prices for options. Filterbank is from StreamIt [19]
benchmark suite. The benchmark creates a filter bank to perform multi-rate
signal processing. Jacobi is a two-dimensional 5-point stencil computation that
solves Laplace equations using Jacobi iterations. Heat3D is a three-dimensional
7-point stencil computation that solves a heat equation. Both Jacobi and Heat3D
are common computations in scientific applications. These benchmarks represent
a class of applications and computations that perform well on single-accelerator
systems, and thus can be expected to take advantage of accelerator clusters.

5.2 Scalability

Strong scaling In the strong-scaling test, the problem size is kept fixed and
the number of processes is varied. We use two problem sizes for each bench-
mark: class-A and class-B. A class-A problem is small enough to fit the entire
computation data in a single accelerator’s memory. A class-B problem requires
more than one accelerator to execute, since the memory requirement exceeds the
capacity of a single accelerator. Table 2 shows the setting of each problem class.

Fig. 2 shows the results for both MIC and GPU clusters. HYDRA programs
with class-A problems achieve an average of 24.54x speedup on the 64-nodes MIC



Table 3. Experimental Setup for Weak Scaling

Benchmark MIC Problem Size GPU Problem Size Number of Iterations

Jacobi 8192 × 8192 8192 × 8192 100

Heat3D 512 × 512 × 512 450 × 450 × 450 100

Blackscholes 67,000,000 options 32,000,000 options 100

Bilateral Filter 5500 × 5500 5500 × 5500 1

Filterbank 4,000,000 4,000,000 32

cluster and 27.56x speedup on the GPU cluster. The maximum speedup is 45.18x
on the MIC cluster and 43.81x on the GPU cluster. The speedup is calculated
against a single accelerator execution time. We show the average speedup only
on class-A problems because they can correctly execute on a single node. For
class-B problems, the performance is compared against the performance of a
configuration with the smallest number of accelerators that allow the program to
be executed successfully. Our result shows that Jacobi, Heat3D, and Blackscholes
have good scalability on both MIC and GPU clusters.

MIC STRONG SCALING

(a) Jacobi (b) Heat3D (c) Blackscholes (d) Bilateral Filter (e) Filterbank

GPU STRONG SCALING

(f) Jacobi (g) Heat3D (h) Blackscholes (i) Bilateral Filter (j) Filterbank

Fig. 2. Strong scaling experimental results of five benchmarks on MIC cluster(a-e)
and GPU cluster (f-j). The speedup of the class-A problem is relative to a single-
node performance. The speedup of class-B problem is relative to the performance of a
configuration with the smallest number of accelerators that allow the program to be
executed successfully.

Bilateral Filter shows limited scalability on both MIC and GPU clusters.
The lack of coalesced memory accesses inside the accelerator kernel leads to in-
efficient execution, limiting performance gained by node-level parallelism. With
64 nodes, the speedup is 5.49x on MICs and 18.24x on GPUs. More advanced
compiler analysis may enable coalesced memory accesses, thus improving the
scalability of the generated program. Filterbank also exhibits scalability limita-



(a) Weak scaling-MIC (b) Weak scaling-GPU

Fig. 3. Weak scaling results of five benchmarks on MIC cluster(a) and GPU cluster(b).
The speedup shown is against the execution of a single-accelerator single-node setup.

tion on both MIC and GPU clusters. In contrast to Bilateral Filter, the cause of
the limitation is the conservative methods of the array data flow analysis. The
analysis summarizes memory accesses by all paths of conditional branches inside
the parallel loops, resulting in extra broadcast communications.

On the MIC cluster, Blackscholes with class-B problem size shows super-
linear speedup when the number of nodes increases from 4 to 8. The reason
lies in the data transfers inside the iteration loop. The transfer on 4 nodes is
22.14x slower than on 8 nodes due to MIC’s driver issue. This difference in data
transfer time contributes to the super-linear speedup. This transfer could have
been hoisted out of the iteration loop, however, automatic compiler hoisting
did not take place in this case due to implementation limitations. We tried
hoisting this transfer out of the loop manually, and observed that the achieved
performance showed linear scaling, as in the class-A problem.

Weak scaling In the weak scaling test, the problem size is increased as the
number of processes increases. The problem size per process is fixed. Table 3
shows the problem sizes per compute node used in the weak scaling experiment
on the GPU and MIC clusters. We performed this experiment using up to 32
accelerators. Fig. 3 shows the weak scaling results of both MIC and GPU clusters.
The speedup is calculated over the execution time of a single node with one
accelerator.

Jacobi, Heat3D, Bilateral Filter, and Blackscholes achieve high scalability in
the weak scaling test. Filterbank performs the worst in terms of the scalability
owing to excessive broadcast communication caused by the conservative array
data flow analysis. Note that the achieved scalability is better on the MIC cluster
than on the GPU one. This is because, on average, the accelerator execution time
is greater on MICs than that for GPUs. Therefore, the communication overhead
has a bigger impact on the scalability in the GPU cluster.

5.3 Memory Allocation

In this experiment, we show only weak-scaling results on the MIC cluster. The
other tests exhibited similar trends. Fig. 4 shows the memory allocation require-



(a) Jacobi (b) Heat3D (c) Blackscholes

(d) Bilateral Filter (e) Filterbank

Fig. 4. Accelerator memory allocation in weak-scaling experiments on MIC cluster.

ment for each benchmark in the weak scaling experiment on the MIC cluster.
Each chart shows the total amount of memory required by the entire problem
and the amount of memory actually allocated on the accelerator for each bench-
mark. For all benchmarks, except Filterbank, the size of allocated memory on
the accelerator memory is fixed as the number of nodes increases. The dotted
line indicates the single accelerator memory limitation. It shows the scaling limit
if the memory allocation optimization is not implemented. Without memory al-
location optimization, Jacobi cannot exploit more than 8 nodes, while Heat3D,
Blackscholes, and Bilateral Filter benchmarks cannot run beyond 4 nodes.

Unlike other benchmarks, the accelerator memories allocated by each pro-
cess are different for Filterbank. We report the minimum memory (required by
process 0) and the maximum memory (required by process N-1) in Fig. 4e. For
process 0, the accelerator memory requirement remains the same for any prob-
lem size. For other processes (1 to N-1), however, the memory requirement grows
with the problem size. This behavior is explained by the conservative array data
flow analysis employed by HYDRA that results in over-allocation in the presence
of conditional branches.

6 Related Work

Programming Models for Accelerator Clusters Several previous efforts
proposed programming models for accelerator clusters. OmpSs [2, 3] considers
a directive-based shared address programming model. This model requires the
users to provide extra information to the compiler about computation offload-



ing and data transfers. Programmers use data region to specify accessed regions
of shared data; the underlying runtime system then manages the allocations
and transfers of these regions. Several other approaches [13,16] extend a PGAS
(Partitioned Global Address Space) language to support GPU clusters. PGAS
languages require programmers to specify thread and data affinity explicitly.
In contrast to this work, the HYDRA compiler derives the required information
automatically from HYDRA programs, which are easier to write than PGAS pro-
grams. SnuCL [9] extends an OpenCL framework to run on CPU/GPU clusters.
The SnuCL runtime system provides a single machine image, which allows single-
node OpenCL programs to run on the cluster. In contrast to our work, SnuCL
programmers still face the programming complexity of accelerator programming.
Moreover, as we discussed earlier, OpenCL is not fully portable. Programmers
need to customize OpenCL programs for each architecture to fully utilize CPUs
and accelerators.

Memory Management and Communication Memory management and
communication are innate to any shared address programming model. Several
previous efforts proposed shared address programming models for CPU clusters.
There are two major approaches for memory allocation management in these
contributions. The first approach is to rely on the underlying operating system
or runtime system. For example, in OMPD [10], each process allocates the entire
shared data in every process and lets the virtual memory system allocate the
required physical memory when the data is accessed. This solution is not feasible
on accelerators because of the lack of virtual address space on GPUs and the lack
of swap space on MICs. Another example is Software Distributed Shared Mem-
ory (SDSM) [7]. The SDSM runtime system provides a shared address abstrac-
tion of the distributed system. The performance of this approach has remained
far below that of MPI programming. Another approach relies on information
provided by the programmers. In High Performance Fortran (HPF) [18], pro-
grammers explicitly provide data partitioning information through directives. In
PGAS languages, such as UPC [5], Co-array Fortran [15], and Titanium [21] , the
programmers explicitly specify the affinity between processes and data. In con-
trast to these systems, HYDRA neither requires additional directives nor relies
on the operating system. On the GPU side, Ramashekar and Bondhugula [17]
proposed a hybrid compiler-runtime analysis, based upon the polyhedral model,
to automate data allocation on multi-GPU machines. In contrast to their work,
HYDRA uses symbolic analysis to perform compile-time memory allocation and
transfer analyses targeting accelerator clusters and provides a complete transla-
tion system for multiple accelerator types. NVIDIA introduced Unified Memory
Access to simplify memory management on GPUs; however, this system incurs
high overhead [12].

7 Conclusion

We have introduced compile-time and runtime techniques for extending shared
address programs for execution on accelerator clusters of multiple types.



The paper presented two novel, architecture-agnostic compile-time analyses,
which ensure scalability of the translated program. We also presented a runtime
system to support accelerator communication. To show the effectiveness of these
analyses, we developed a source-to-source translation system that generated an
accelerated MPI program from a simple shared address programming model
called HYDRA. To support the architecture-agnostic nature of the proposed
technique, a careful compiler design was presented. We demonstrate this de-
sign for two common accelerators: NVIDIA GPUs and Intel Xeon Phi. With the
proposed techniques, we showed that the simple form of shared address program-
ming can be extended to accelerator clusters without additional involvement of
programmers.

HYDRA can achieve an average speedup of 24.54x against a single-accelerator
performance when running on a 64-node cluster with Intel Xeon Phis and a
27.56x speedup when running on 64 nodes with NVIDIA GPUs. We also showed
that our single-node performance is comparable to, or better than, a state-of-the-
art OpenMP-to-CUDA translation system. There are additional opportunities
for performance enhancements in our system for both computation and commu-
nication. Ongoing work is exploring these opportunities.

Acknowledgments

This work was supported, in part, by the National Science Foundation under
grants No. 0916817-CCF and 1449258-ACI. This research used resources of the
Keeneland Computing Facility at the Georgia Institute of Technology and the
Extreme Sciene and Engineering Discovery Environment (XSEDE), which are
supported by the National Science Foundation under awards OCI-0910735 and
ACI-1053575, respectively.

References

1. Bae, H., Mustafa, D., Lee, J.W., Aurangzeb, Lin, H., Dave, C., Eigenmann, R.,
Midkiff, S.: The Cetus source-to-source compiler infrastructure: Overview and eval-
uation. International Journal of Parallel Programming pp. 1–15 (2012)

2. Bueno, J., Planas, J., Duran, A., Badia, R., Martorell, X., Ayguade, E., Labarta,
J.: Productive programming of GPU clusters with OmpSs. In: Parallel Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International. pp. 557–568 (May
2012)

3. Bueno, J., Martorell, X., Badia, R.M., Ayguadé, E., Labarta, J.: Implementing
OmpSs support for regions of data in architectures with multiple address spaces.
In: Proceedings of the 27th International ACM Conference on International Con-
ference on Supercomputing. pp. 359–368. ACM, New York, NY, USA (2013)

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: Proceedings of the
2009 IEEE International Symposium on Workload Characterization (IISWC). pp.
44–54. IISWC ’09, IEEE Computer Society, Washington, DC, USA (2009)

5. UPC Consortium: UPC language specifications, v1.2. Tech Report LBNL-59208,
Lawrence Berkeley National Lab (2005)



6. Intel Corporation: Intel R© SDK for OpenCL applications XE 2013 R3,
https://software.intel.com/sites/products/documentation/ioclsdk/

2013XE/UG/index.htm
7. Dwarkadas, S., Cox, A.L., Zwaenepoel, W.: An integrated compile-time/run-time

software distributed shared memory system. In: Proceedings of the Seventh In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. pp. 186–197. ASPLOS VII, ACM, New York, NY, USA (1996)

8. Han, T.D., Abdelrahman, T.S.: hiCUDA: High-level GPGPU programming. IEEE
Transactions on Parallel and Distributed Systems 22, 78–90 (2011)

9. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: An OpenCL framework for
heterogeneous CPU/GPU clusters. In: Proceedings of the 26th ACM International
Conference on Supercomputing. pp. 341–352. ICS ’12, ACM, New York, NY, USA
(2012)

10. Kwon, O., Jubair, F., Eigenmann, R., Midkiff, S.: A hybrid approach of OpenMP
for clusters. In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. pp. 75–84 (2012)

11. Kwon, O., Jubair, F., Min, S.J., Bae, H., Eigenmann, R., Midkiff, S.: Automatic
scaling of openmp beyond shared memory. In: Rajopadhye, S., Mills Strout, M.
(eds.) Languages and Compilers for Parallel Computing, Lecture Notes in Com-
puter Science, vol. 7146, pp. 1–15. Springer Berlin Heidelberg (2013)

12. Landaverde, R., Zhang, T., Coskun, A.K., Herbordt, M.: An investigation of uni-
fied memory access performance in cuda. In: Proceedings of the IEEE High Per-
formance Extreme Computing Conference (2014)

13. Lee, J., Tran, M., Odajima, T., Boku, T., Sato, M.: An extension of
XcalableMP PGAS lanaguage for multi-node GPU clusters. In: Euro-Par 2011:
Parallel Processing Workshops, Lecture Notes in Computer Science, vol. 7155, pp.
429–439. Springer Berlin Heidelberg (2012)

14. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP programming and tuning
for GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 1–11 (2010)

15. Numrich, R.W., Reid, J.: Co-array fortran for parallel programming. SIGPLAN
Fortran Forum 17(2), 1–31 (Aug 1998)

16. Potluri, S., Bureddy, D., Wang, H., Subramoni, H., Panda, D.: Extending
OpenSHMEM for GPU computing. In: 2013 IEEE 27th International Symposium
on Parallel Distributed Processing (IPDPS). pp. 1001–1012 (May 2013)

17. Ramashekar, T., Bondhugula, U.: Automatic data allocation and buffer manage-
ment for multi-GPU machines. ACM Trans. Archit. Code Optim. 10(4), 60:1–60:26
(Dec 2013)

18. High Performance Fortran Forum: High performance fortran language specifica-
tion. SIGPLAN Fortran Forum 12(4), 1–86 (Dec 1993)

19. Thies, W., Karczmarek, M., Gordon, M.I., Maze, D.Z., Wong, J., Hoffman, H.,
Brown, M., Amarasinghe, S.: Streamit: A compiler for streaming applications.
Technical Report MIT/LCS Technical Memo LCS-TM-622, Massachusetts Insti-
tute of Technology, Cambridge, MA (Dec 2001)

20. Vetter, J., Glassbrook, R., Dongarra, J., Schwan, K., Loftis, B., McNally, S., Mered-
ith, J., Rogers, J., Roth, P., Spafford, K., Yalamanchili, S.: Keeneland: Bringing
heterogeneous gpu computing to the computational science community. Computing
in Science Engineering 13(5), 90–95 (Sept 2011)

21. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,
A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-
performance Java dialect. In: In ACM. pp. 10–11 (1998)


