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Highlights

« HYDRA: extending shared address programming to accelerator
clusters

» Programmer only specifies parallel regions

« Fully automatic translation system generates MPI + accelerator
code

» Optimized accelerator data placement and transfer
« High-level IR supports multiple accelerator architectures

« Average 64-node cluster speedups: 24.54x on Xeon Phi, 27.56x
on GPU

HYDRA Programming Model

HYDRA is a directive-based shared address programming model
offering a single parallel loop construct.

#pragma hydra parallel for [clauses]

#pragma hydra parallel for Figure 1:
for (i=1; i<SIZE H+1l; i++) { HYDRA
for (j=1; J<SIZE+l; Jj++) | Program
alil (3] = (b[i-1]1[3] + ...; Example

All available clauses for the HYDRA parallel loop directive are listed
in Table 1. These clauses are syntactically optional but might be
needed for program semantics.

Clauses Format Table 1:
HYDRA

shared shared (varlist) Parallel Loop
private private (varlist) Clauses
firstprivate firstprivate (varlist)

reduction reduction (op:varlist)
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Data Transfer Analysis

« Precise data transfer between host and accelerator memory is
critical. Excessive transfer overhead can limit scalability

Algorithm
» Perform local analysis of shared data access
+ First step: Identify necessary shared data for a program block
» Use LUSE information to determine a live-in and live-out data
» Second step: Determine the transfer range of the shared data
» Transfer range can be defined by the minimum lower bound
and the maximum upper bound of local accesses

Memory Allocation Optimization

+ Full data allocation could exceed its capacity
« Failure of single accelerator execution
+ Inability to scale to multiple nodes

Algorithm
« Perform global analysis to summarize all accesses of the shared
data
« The allocation size can be found using the minimum lower bound
and maximum upper bound of all accesses
» Compiler deal with the misalignment of the newly allocated and
old shard data

HYDRA Translation System

» Compiler: Translate HYDRA programs to accelerated MPI
programs.

» Support multiple target accelerator architectures
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Figure 2: HYDRA Compiler Translation Process

* Runtime: Handle remote accelerator communication
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