HYDRA: Extending Shared Address Programming for Accelerator
Clusters

Putt Sakdhnagool, Amit Sabne, Rudolf Eigenmann

School of Electrical and Computer Engineering, Purdue University

Highlights

« HYDRA: extending shared address programming to accelerator
clusters

» Programmer only specifies parallel regions

« Fully automatic translation system generates MPI + accelerator
code

» Optimized accelerator data placement and transfer
« High-level IR supports multiple accelerator architectures

« Average 64-node cluster speedups: 24.54x on Xeon Phi, 27.56x
on GPU

HYDRA Programming Model

HYDRA is a directive-based shared address programming model
offering a single parallel loop construct.

#pragma hydra parallel for [clauses]

#pragma hydra parallel for Figure 1:
for (i=1; i<SIZE H+1l; i++) { HYDRA
for (j=1; J<SIZE+l; Jj++) | Program
alil (3] = (b[i-1]1[3] + ...; Example

All available clauses for the HYDRA parallel loop directive are listed
in Table 1. These clauses are syntactically optional but might be
needed for program semantics.

Clauses Format Table 1:
HYDRA

shared shared (varlist) Parallel Loop
private private (varlist) Clauses
firstprivate firstprivate (varlist)

reduction reduction (op:varlist)

Acknowledgments

Extending Shared Address Programming
Beyond CPU Clusters

Data Transfer Analysis

« Precise data transfer between host and accelerator memory is
critical. Excessive transfer overhead can limit scalability

Algorithm
» Perform local analysis of shared data access
+ First step: Identify necessary shared data for a program block
» Use LUSE information to determine a live-in and live-out data
» Second step: Determine the transfer range of the shared data
» Transfer range can be defined by the minimum lower bound
and the maximum upper bound of local accesses

Memory Allocation Optimization

+ Full data allocation could exceed its capacity
« Failure of single accelerator execution
+ Inability to scale to multiple nodes

Algorithm
« Perform global analysis to summarize all accesses of the shared
data
« The allocation size can be found using the minimum lower bound
and maximum upper bound of all accesses
» Compiler deal with the misalignment of the newly allocated and
old shard data

HYDRA Translation System

» Compiler: Translate HYDRA programs to accelerated MPI
programs.

» Support multiple target accelerator architectures

proms (0w ousse Al temer [bemery
regrem . Dlstrlbut|on 7777777 Analy5|s | Extractor Optimization
Code Generation @

Acc'\e(llzlr:tor@ Generator Communication Acce_ler_ator <: '_\r_?':nmsz‘:
Program Generation Optimizer Analysis

MIC Code
Generator

Figure 2: HYDRA Compiler Translation Process

* Runtime: Handle remote accelerator communication

This work was supported, in part, by the National Science Foundation under grants No. 0916817-CCF and 1449258-AClI. This research used resources of the Keeneland Computing Facility at the Georgia Institute of Technology and the Extreme

Sciene and Engineering Discovery Environment (XSEDE), which are supported by the National Science Foundation under awards OCI-0910735 and ACI-1053575, respectively.

Evaluation
Strong Scaling - Scalability

us
- ~—class-A

16 P g 2 class-B
% % 6
L LI
i
2
1

12 4 8 16 2 e 12 4 8 16 32 6 12 4 8 16 32 6
Number of Nodes Number of Nodes Number of Nodes

Speedup

o BILATERAL FILTER 4 FILTERBANK

Speedup

12 4 8 16 2 & 12 4 8 16 2 e
Number of Nodes Number of Nodes

Strong Scaling — Memory Allocation

10.00
—+—Jacobi

Heat3D
Blackscholes

4.00 \ —<BilateralFilter

2.00 Filterbank

——

Allocated Memory (GB)

1 2 4 Numberbfnodes 16 32 64

Weak Scaling - Scalability

GPU Mic
12 2 —+—Jacobi
1 ———— 1 - ——
\‘\.\ ~ o — ~#-Heat3D
08 ~
2 N—— ~
—
Fos Blackscholes,
7 oa 04
—BilateralFilter
02 02
o 0 Filterbank

Number of Nodes Number of nodes

Weak Scaling — Memory Allocation

» 1acos! B HeATID @ BLACKSCHOLES
o
T g ——per Node
T, i Alocation
H £
I £ —a—Problem
3 T
H i size
2 %
i —-e-Limit
o o

12 4 8 18 3% 12 4 8 16 n 12 4 8 18 0m
Number of Nodes Number of Nodes Number of Nodes

BILATERAL FILTER FILTERBANK

~—Per Node Allocation - Node 0
Per Node Allocation - Node N-1

-m-Problem Size

Allocated Memory (GB)
Allocated Memory (GB)
° e
o &

1 2 Nuber of Nofles 16 32

